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FOREWORD

This report covers the work completed during the period from

August I, 1979 to February 29, 1980 and summarizes the entire work

completed on the research project "Investigation of the Flow Pheno-

mena Around a Jovian Entry Body Under Chemical and Radiative Non-

equilibrium Conditions." The research project covered the period

from February 1978 to March 1980. The work was supported by the -

NASA/Langley Research Center (Aerothermodynamics Branch of the Space

Systems Division) through research grant NSG+IS00. The grant was

monitored by Dr. Kenneth Sutton of the Space Systems Divis-on.
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INFLUENCE OF NONEQUILIBRIUN RADIATION AND SHAPE CHANGE

ON AEROTHER_L ENVIRONNENT OF A JOVI/hN ENTRY BODY

By

S N. Tiwari I and S.V. Subramanian 2

SU_RY

)

The influence of nonequilibrium radiative energy transfer and the •

effect of probe configuration changes on the flow phenomena around a

Jovian entry body is investigated. The radiating shock-layer flow is

assumed to be axisynnmetric, viscous, laminar and in chemical equili-

brium. The radiative transfer equations are derived 'under nonequili-

brium conditions which include multilevel energy transitions. The _'

equilibrium radiative transfer analysis is performed with an existing _

• nongray radiation model which accounts for molecular band, atomic line, !

and continuum transitions. The nonequilibrium results are obtained

_#ith and without ablation injection in the shock layer. The nonequi-

librium results are found to be greatly" influenced by the temperature

distribution in the shock layer. In the absence of ablative products,

the convective and radiative heating to the entry body are reduced

significantly under nonequilibrium conditions. The influence of

nonequilibrium is found to be greater at higher entry altitudes. With

coupled ablation and carbon phenolic injection, Ib chemical species are

used in the ablation layer for radiation absorption. Equilibrium and

nonequilibrium res_Llts are compared under peak heating conditions. For

the study of _he probe shpae change effects, the initial body shapes

considered are 45-degree sphere cone, 3S-degree hyperboloid, and 45-

degree eliipsoid. In all three cases, the results indicate that the

I Eminent Professor, Department or" Nechanical Engineering and ,_lechanics,
Old Dominion University, Norfolk, Virginia 255_P. *'

"-Graduate Research Assistant, Department of ,Mechanical Engineering and

._lechanics,Old Pominion University, Norfolk, Vzrginia 23S08.
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shock-layer flow field and heat transfer to the body are influenced

significantly by the probe shape change. The effect of shape change

on radiative heating of the afterbodies is found to be considerably

larger for the sphere cone and ellipsoid than for the hyperboloid.

1981003630X-011
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During the exploratory missions to the planetary atmospheres, the

entry spacecraft is subjected to various flow environments and heating

conditions, The t)_e and intensiveness of this heating mainly depends
x

on :he atmospheric composition of the planet and the trajectory of the

entry vehicle. At hypersonic entry conditions, radiation plays a very

important role in the analysis of the flow phenomena around the planetary

entry body. The radiative energy transferred to the body from the high-

temperature shock-layer gas exceeds the convective ahd aerodynamic

heating rates. The problem of radiative heating of planetary entry

bodies has been investigated extensively i_ the literature (refs.

1 - 4). One such situation where the radiative heating constitutes

the major portion of the heat transferred to the probe is the case of

Jovian entry heating (refs. 5 - 8). In order to study the composition

and structure of Jupiter's atmosphere, the National Aeronautics and

Space Administration has scheduled a Jovian mission for a probe space-

craft in 1985. At times, the entry velocity of the Jupiter probe is

expected to exceed 40 km/sec. The probe has to survive the intense

radiative heating during this high-speed entry mission. For this

purpose, the probe is normally coated with ablative heat shield materi-

als. As the probe advances through the Jovian _tmosphere the heat

shield ablates and forms a protective layer of cool gases around the

probe, and these are mainly responsible for absorbing the incoming

radiation. For the Jovian entry probe, it has b,:en estimated that

the heat shiel_ weight for thermal protection w_ll be as much as 45

percent of the total weight of the probe. Sin:e experimental facilities

cannot adequately simulate the conditions expected during a Jovian

entry mission, most of the required information must be obtained from

theoretical studies. This is particularly true for investigating the

extent of radzative heating to the entry body.

, In order to assess the magnitude of radiative heating to the Jovian

entry body (and its influence on convective heating and ocher f!o_

phenomenal, it is es_entia_ to employ _eaningful radiative transport

3
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models in analy:ing the shock-layer flow phenomena. In formulating

the transfer equations for radiating gases, tt is normally assumed

that the gas is in local ther_,odym_ic equilibrium (LTE). With this

assumption, the transfer equation is simplified significantly as the

populations of the various atomic and molecular st_.tes ave given by

the equilibrium (Boltzmann) distribution. For a wide r_-ge of condi-

tions encountered in high-speed gas dynamics, the transitions to or

from the excited energy states are primarily due to atomic and molecu-

lar collisional processes (rather than radiative emission and absorption

processes). Under these conditions, the assump:ion , f LTE is usually

j_stified. There are situations, however, where thi_ assumption cannot

be justified and conditions of nonlocal thermod)mamic eouilibrium

(NL1E) may exist. In a very strict sense, NLTE co:responds to the

conditions where population densities of various energy levels deviate

from t_e equilibrium (Soltzmann) distribution. Quite often it has

been sp_,culated that use of an LTE radiative transport model may not

be justi?ied in a shock-heated plasma. This is because, for the com-

bined conditions of high velocities, high temperatures and low densities,

the probability of a radiative transit_o_ becomes comparable with the

probability of corresponding coliisional transitions (ref. 9). Unless

the gas is optically thick, the emission of a photon is a process that

is not balanced by kts inverse. Consequently, the population distri-

bution among the energy levels de?arts from that predicted by the

Bolt:mann equation. Only one transition in one atom, molecule or ton

need be unbalanc, d in this _ay to invalidate the LTE assumption.

_st analyses avaiiable on the NLTE radiative heat trans(er are

limited te vxbrationa_ly excited, infrared - _ive diatomic and triatomxc

molecules (refs. I0 . 13). This situation is encountereu _n some en-

gineering and upper atmospheric studies. The radiative processes

associated with the Jovian entry conditions, however, :orrespond to

ultraviolet radiacion and involve electronic transitions. Furthermore,

the shock-layer gas consists of molecules and atoms as well as c'_arged

particles. Hence, the studzes avazlable on the _;_TE radiative heat

tr, nsf_r are not part.cularly suitable for 2ov_an entry conditions.

1981003630X-013
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One particular study by Horton {ref. 14) estimates the importance of i_

nonequilibriumradiation during a hypersonic entry into Jupiter's _

atmosphere. It £s concluded, in this study, that the NLTE effect

depletes the ablation-layerthickness. This leaves the ablative

products more transparent, and the absorption of radiation by these '_

species is less than the equilibrium value. As a result, the net

radiative heat flux to the probe surface is more under NLTE conditions.

Although this conclusion is in general agreement with the kind of _

behavior expected in an ablation=contaminated,nonequilibrium,boundary=

layer flow, the analysis is not complete. It is important to remem=

ber that the NLTE phenomenon is among the gas particles themselves
,\

rather than between the gas and the radiation field. Thus, essentially

no study is available that treats the problem of NLTE radiative transfer ',
/

under planetary entry conditions in a systematicmanner.

Under NLTE, there are more particles in the higher energy levels

than normally predicted by the equilibrium theory. This is because

the particles take considerably longer time to establish a deexcitation i

collision in a nonequilibriumfield. The overpopulationof the excited

energy levels leaves the unexcited levels underpopulated. As a direct

consequenceof this, the absorptionpattern of the particles is not the

same as the equilibriumabsorptionbehavior {sincea particle in an

unexcited state is capable of absorbing morc radiation than the one

in an excited state). Hence, a more detailed analysis of _he absorption

cross section of these particles has to be made under both LTE and NLTE

conditions. The frequency=dependentabsorption coefficientfor a non=

gray gas analysis may be treated either in detail or by a "step model."

There are several methods available in the literaturefor detailed _

computationof the equilibriumabsorption coefficient {refs. 15 - 17).

In a step model, the frequencydependence is broken into a number of

discrete steps. Sutton (see Zoby et al., _ef. 18) developed a $8=step _

model for the hydrogen and helium mixture. For this case, a 30=step ;

model developed by Tiwari and Subramanian simplifiesthe analysis even ;,

further, and the results compare well with the other 2 models {ref. 19). ,_

In general, the nonequilibriumabsorption coefficientis obtained by

5

?

1981003630X-014



multiplying the equilibriumwlucs by a nonequ_libriumfactor. This

factor is a _unction of the intensity of the incident radiation, col- !J

lisional relaxation time of the particle under investigation, and the I

radiative lifetime of the excited state. It is, therefore, important

to find an appropriate relation for this nonequilibrium factor for the

.Jovian entry conditions.

After evaluation of the spectral absorption coefficient, the

next step is to develop an appropriate expression for spectral and

total radiative heat fluxes. The expression for the total radiative

transport involves integrationover both the frequency spectrum and

the physical space. In general, the problem of radiative exchange

is a complex three-dimensionalphenomenon. The inclusionof uonequi-

librium formulationadds to this complexity with different chemical

species at different energy levels. Hence, reasonable assumptions are

required ir_order to obtain meaningful solutions of the transfer

equation. In many physically realistic problems, the complexity of

the three-dimensionalradiative transfer can be reduced by introduction

of the "tangent slab approximation." This approximatiol,treats the

gas layer as a one-dimensionalslab in calculationof the radiative

transport. Radiation in directions otl_ertb_n normal to either the

body or shock is neglected. The methods for calculating the divergence

of the radiative flux and other conservationequations are available

in references _0 to 22.

_mother problem which arises directly from the radiative heating

rates _s the effect of shape change and mass loss on the flow field

of a Jovian entry body. For exploratory missions to planets such as

Mars and Venus, the levels of heating to the entry prob_ are not severe

enough to significantlychange the mass and shape of the probe. Irt

contrast, the large radiative heating rates associatedwith the Jovian

entry result in massive ablation of the protective heat shield material

as the probe advances through the atmosphere (ref. 23). This, in turn,

results in different probe con£1gurationsat different stations along

the entry trajectory. This change of shape can significantlyaffect

i b

i
t

I

1981003630X-015



', the flow pattern and the heating rate distribution around the probe. :,,

Sutton et at, (refs, 24 - 2b) h_ve presented an inviscid flow-field -+ •

analysis for £nvestigatingthe effects of the recession of the heat _ ,.

shield caused by radiative heating to the Jupiter probe. The initial _
probe configurationsconsidered were h)Terboloidsand sphere cones !

Important studies available on the effects of mass loss shape change, _ _

and real-gas aerodwnamics of a Jovian atmospheric probe are discussed i rz-

in a survey article by I_alberg et al, (ref. 2T), It is clear from the _

review of this article that further studies are needed to investigate

the effects of the shape changes on heating of the forebody and after-

body of different Jovian entry probes, ._,

From the literaturesurvey, i= is clear that no work is available _ +

which considers the influence of nonlocal thermodynamicequilibrium + +

, radiative heating flow phenomena around a Jovian entry body, A few

: available studies are either inappropriateor provide very little _,

informationfor nonequilibriumanalysis under Jovian entry conditions, -_

The presence of different ablative species further complicates the

nonequilibrium analysis. For a correct NLTF analysis, it is essential

to consider the various excitation and deexcttation prot'ablities of

all important species in the shock layer, It is important to realize

that, through an entirel? different temperature distribution, the NLTE .

radiative transfer influences significantly the convective heating rate

,_s well as other flow properties in the shock layer. Since an accurate

determination of the total heating rate is essential for the design of

the heat shield and for assessing the survival of the entry probe, it

is necessary to investigatethe extent of NLTE influenceon the entire

shock-layer flow phenomena in a systematic manner,

The primary objectives of this stud)', therefore, are twofold:

first to investigate the influence of NLTE radiative transfer, and then

to determine the effects of changes in the probe configurationson the

entire shock-layer flow phenome.a, to accomplish this in a systematic _+

+ manner the present study is divided into four rosier areas: (l) sig- ;m , . \

: nificance of radiate.on models on the flow-field solutions, t2_ influence ,.

• 1

i I:
t
t
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4,

of NLTE radiation without able,ton injection, (3) importanceof NLTE

radiation with ablztion injection, and (4) effect of probe shape change _

on the flow phenomena. J.

The basic formulationof the entire probtem considered for the

present study is given in the section titled "Basic Formulation."

Discussionson the radiative transfer equations, radiation absorption

models, and radiative flux equations (for both the LTE and NLTE

conditions)are presented under "Radiative Transport Models."

Informationon collisional relaxation times and radiative lifetimes

of different species fin their appropriate states) are presented next
L

("RadiativeLifetimes and Collisional Processes for the Shock-Layer

Gases"), Thermodynamicand transport properties for each species

considered in the shock layer are then given ("Thermodynamicand !

Transport Properties"),followed by solution procedures for the NLTE

radiative flux equations and other shock-layer equations in "Method

of Solution." The entire results of the study are summarized in

"Results and Discussion,"followed by "Conclusions." -

L
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Subscripts l

i ith species

s shock value I;
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* dimensional quantity ,o

12
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BASIC FORMULATION

ouo !i
t

The physical model and coordinate system for a Jovian entry body !

are shown in figure I. In this figure, s is the distance measured

along the body surface and n is the distance normal to the body

surface. The flo_' in the shock layer is considered to be axisymmetric,

steady, radiatinE and in chemical equiJibrium. Both inviscid as well

as viscous shock-layer analyses are considered in the present study.

The basic governing equations (along with the appropriate boundary

conditions) are presented in this section.

Inviscid Flow Equations

l

For the physical model considered, the governing equations for

inviscid flow are expressed as (refs. 28, 29):

, Continuity: ":

: (_/_s)[(r+ n cose)ou] �C_/_n)(r¢ov)- o C1) _

s-momentum:

(u/r)(_u/_s) �vC_u/_n) �(uw/r)�(I/or)(_pl_s)-o (23 ,

n-momentum: , ,_

Cu/r)(_v/_s) �vC_vl_n)Cu2_/r) �o-I(_p/_y). o C_)

Energy: ?

• (u/r) (_Hl_s) �vC_Hl_n)(ul_r) (_pl_s) -

r_

- (v/o) ($pl_n) * (I/0) (div qR) • 0 (4) _,

where '_

r-l,n<
t

div qR " (_qR/_n)+ qR[(_/r) �(cos8/r)]

!

J
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{

It should be noted that the above equations are written in nondimen- 1

sional form. The quantities used to nondimensionalize these equations !

are defined as: i
* It t t _t _

s- s /RN n- n /RN u* u IV ]
,i

* . . . .2 . .2

o - o /o. p- p I Co. v® ) h - h IV _

J

* t t 'Q *_ t * _

r = r /RN qR " qR/cO- V ) _ = < /RN (5) :

Viscous Flow Equations _

Basic governing equations for viscous shock layer are obtained

from the steady-state Navier-Stokes equations by keeping terms up

to second order in the inverse square root of the Reynolds number.

c, as (refs'S, 30)-

Continuity:

C_/_s)[Cr+ n cos e)ou]+ C_/_n)(r_pv)- o C6)

s-momentum:

o[Culr)C_ul_s)+ vC_ul_n)+ Cuwlr)]+ r'XC_pl_s)

• c2{C_/_n)Cu*)• u[C2_/r)• Coos_/_31,} (7)

n- momentum:

o[Cu/r) C)v/_s) • vC_)v/an) - CuZ_/r)] • C_pl)n) • o C8)

Energy:

o[(ulr) (_Hl_s) + v()Hl_n)] - v(Sp/_n) * ou2(wlr)

• c2[[_l_n)Ol * _2] " { (_qRTM) * ql[(_/r) + (cos e/r)]} (9a)

•, where

Y = (_u/_n) - (u_Ir) :,
k

IS

+
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Ns Ns

¢x = (WPr) C_Hlan) - (_IPr)i_.lhi Caci/an) - _ hi J.• t=1 1

�C_IPr)CPr - I) uC_u/3n] - [_u21r) CQb)

'2 " [c</r) �€�h�´�e/¢)]_x(9c)

In the preceding equations, the total enthalpy H = [(u2 + v2)/2] and

Ji is the mass flux relative to the mass velocity and is given by (refs.
31, 32):

3 i = (_/Pr] LeCaci/3n ) ClO)

In equation (I0), Le represents the multicoa_onent Lewis number and,

in the present analysis, is taken to be a constant for all species

as I.I0. In addition to the quantities given in equation (5), the

terms used to nondimensionali=e the above set of viscous equations

are

t t • • t • t •

Pr • _ Cp/k Le • 0 Cp Dij/k _ = u /URe f

. . ;; •k = k /(_Ref Cp,.) Cp - C /C ,. URef • u

In addition to the preceding set of equations for the inviscid and

viscous shock-layer flow, the species continuity equation and equation

of state are needed to complete the set of equations. The species

continuity is given by the expression

o[(u/r) (_ci/as) �v(_Ci/an)]• (c2/rc) [(a/an) (rcJi)l (t2a)

-
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where

• r �ncos e (12b)

The equation of _ate for the gas, in general, can be expressed as "

* , 03)
p - 0 TCRIM Cp .)

where Cp,. represents the specific heat of the gas at the free-stream
conditions. The exp:.esslon for the equation o£ state for a hydrogen/

helium mixture is given by Zoby et al. Cref. 33) _s:

, * k

T • CT[Cp*/lO15250)_/( 0 /0.001292) ] C14a)
e

H* • C_[(P*/10132S0)m/( 0./0"001292)n] CR*To/H ) C14b)

where

' k • 0.65206 - 0.04407 _n(_2)

t • 0.67389 - 0.04637 AnCXH2)

m • 0.952S2 - 0.1447 _nCXtt2)

n • 0.975S6 - 0.16149 tn(XH2)

ut • v. sine[l • 0.7476C1- xH2)]
2 3

CTU • - $45.$7 + 61.608 Ut " 22459 Ut + 0.039922 Ut

- 0.00035148 Ut + 0.0000012361U¢

Z 3

CHU • S,6611 - 0.$2661U t _ 0.020376 Ut " 0.00037861U t
5

• 0.0000034265 Ut " 0,000000012206 Ut

cT• _ • 61._ (l-x.2)

17
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cH -CHU- o.5167C -xH2)

and XH2 represents the mole fraction of H2.

Free-Stream and Boundary Conditions

The Jupiter atmQsphere m_LnIy consists of hydrogen and helium

gases. In the past, the nomLnal composition o£ the atmosphere was

assumed to be 85 percent hydrogen and 15 percent helium (ref. 34).

For diflerent entry times and altitudes, the fr_e-stream conditions

are different. The values used in the present study at different

altitude_ are given in table I.

Table I. Free-stream conditions for Jovian entry.

Altitude Velocity Density Pressure Temperature
Q @ t

Z,km V , km/sec 0_, kg/m3 o., N/m2 T , K

109 35.207 7.197E-4 443.02 163.72

116 39.09 4.360E-4 24S.00 166.91

138 44.04 2.127E-4 13_.00 167,02

The free-strea_ enthalpy can be calculated by the relation (ref. 35):

H - 1.527 RT. (IS)

where R • 8.135 Joules/K-mole is the universal gas constant. The

number density of hydrogen can be calculated by the ideal gas law

and the reZation can be _tven as

I

NH2 (?.243X17x 1022) (P /T } X_2 (I_

where XH2 is the mole fraction of H2.

18
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mh_- _ ' .... ' "7

In order to solve the set of governing equations [eqs. (l) to

(14]], it is essential to specify appropriate boundary conditions

at the body surface and shock interface. In all cases, the boundary <

conditionsimmediatelybehind the shock wave are calculated by using

the Rankine-Hugoniotrelations. In the viscous analysis, the no-slip

and no-temperature-jumpboundary conditionsare used• Consequently,

the velocitiesat the surface are

i u(o,n) = uw = 0 (17)

v(o,n) = v = 0 (18) 4
W , t

The boundary condition given by equation (18) is valid only for

the case with no mass injection. For this case, the temperatureat :

the wall is usually specified as
,i

T = const (19)
W

For the case of ablationmass injection,_.hewall temperatureis either :

specifiedor calculated. For the calculated wall temperatureconditions,

the wall temperatureis the sublimationtemperature of the ablator

surface. Moreover, the ablation process is assumed to be quasi-steady.

With these assumptions,the expressionsfor the coupled mass injection

rate and the sublimationtemperature Cfor the ca'_'bon-phenolicheat i

shield material consideredin this study) are given by
N
S

t t _ * • t t
= {(-qc,w-qR,w)/[_,_ (Ci hi)w-hA]}/(O_ V ] [20) +i

t'

TSub • )'i C "1
j=l 'J �logPw . _'2,j C oij

" 1
�logPw j_=l _3,j C -1• (21) _ :

19
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_here Pw is the wall pressure in atmospheresand CA is the ablator

mass frac_iou at the wail. The _£,j coegficients whose values are
given in references S, 50, and 56 to 39 are applicable for a free-stream ' i

gas composition of 89 percent hydrogen and 11 percent helium by mole,

fraction and for ablator mass fractionsof 0.4 to 1.0. If the ablator
/

mass fraction at the wall is unity, then these coefficientsare valid

for any free-streamgas mixture. For ablation injection, the elemental

concentrationsat the w_ll are governed by convection and diffusion

and are given by

3

(_ci/_n)w - (iI¢2)(mSc/u)w [(oilw - (Oil ] =0 (22)

where Sc is the Schmidt number (Sc = Pr/Le) and (ci)" is the ,;
elemental mass fraction of the solid ablator material at the surface.

T

The heat transferredto the wall due to conduction and mass

diffusion is referred to as the convectiveheat flux and is given by i

the expression

N
$

"qc,w = ¢2[(k_T/_n) �(u/So)_ hi(_ci/3n)] w (23) ,,i=l
?

The radiative flux emitted from the wall is given by the relation

qR (0) - qR,w " tw aT (24)

A value of surface emittance e - 0.8 is used in this study.
W

2O

i
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RADIATIVE TRANSPORT MODELS

Introduction

An appropriate expression for the radiative flux qR is needed

for the solution of the energy equation presented in the previous

section. This requires a suitable radiative transport model and a

meaningful spectral model for variation of the absorption coefficient

of the gas. In this section appropriate expressions for the spectral

and total radiative £1ux are given, and a detailed discussion of i
!

models for the spectral absorption by the hydrogen-helium gas and i_

other important ablative species in the shock layer is presented. .i

Radiative Flux Equations

The equations for radiative transport, in general, are integral i

equations which involve integration over both frequency spectrum and

i physical coordinates. In many p;.ysically realistic problems, the
L

complexity of the three-dimensional radiative transfer can be reduced

by introduction of the "tangent slab approximation." This approximation

! treats _he gas layer as a one-dimensional slab in calculation of the

radiative transport. _adiation in directions other than normal to

either the body or shock is neglected in comparison. Discussions on

i the validity of this approximation for planetary entry conditions are

given in references 40 to _3. The tangent slab approximation is

employed in this study. It should be pointed out here that this

approximation is used only for the radiative transport calculations
I

and not for other flow variables.

I LTE radiative £1ux equations. - For the present study, the

equations of radiative transpor_ are obtained for a gas confined

between two infinite, parallel boundaries, the shock wave and the

body. This is shown in figure 2. For one-dimensional radiation,

the equations of transfer for a nonscattering medium in local

thermodynamic equilibrium (refs. 20, 21) ,:e given by

21
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u(dI_/dTv) = BvCrv) " I (25a)
/

_(dI_/dT v) = Bv(Tv) - I (25b) ;

where

- cos e (26a)

i "

= _v(n) dn (26b)

%(n)= s dn (26c)
'[O'o

In the above equations, _v and Bv represent the frequency-dependent '

linear absorption coefficient and Planck function,respectively.

Furthermore,it should be noted that I+ and I" correspond tov v

positive and negative values of u, respectively. The boundary >

conditions for equations (25a) and (2Sb) can be expressed as
5

I _,v) = I O,u), T

Iv(T_'t_) = IuCTov'U)' v roy (27b)
a

By employing the above conditions,integrationof equations (25a) and

(2Sb} results in

T

I (_v,U) - IvCO,u) U) + B (t)

-I

x exp[.(_v . t)lu]u dt (28a) "<

Iv(zv'u) - I_(Zov,U)exp[-(Tov zv)lu] :

/u]u dr (28b) ..¢ -f °VB. vCt) exp [-(t-_v)
V

h/

a:
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1

=

r cos _t _ _'" "" $_C_
t ., / %; L.jl .,4_

"_'J _ " U ';

0%" _

y ) ,_ (,) _COY

i
i'

Figure 2. Phxsical model and coordinate system for the radiation field,

23
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Equations (28a) and (28b) describe the radiationfield in ten-msof the

temperaturefield within the medium. The temperaturefield is expressed

the Planck function. The term I:(0,u)exp (-r /u) in equation (28a)by

representsthe radiant energy that originatedat the body surface which

has been a_tenuat_dby the factor exp(-Tv/u) as a result of absorption.
The integral term represents the augmentationof I+ due to gaseous I

v I
emission. A similar explanationgoes for equation (28b),with respect

to the shock surface.

Referringto figure _, the spectralradiative flux is expressed i

in terms of intensityof radia£ion (ref. 21) as i

qR_{:v) f4_ Ivc°s _ d_ 2'_I_- = Iv(_v,_)udu (29)
-i

correspondto positive and negative valuesBy noting that Iv and Iv
of _, equation (2g) can be expressedas

qRv(Tv) * 2= u d_ - -=f I u d_ (30)v 0 v

The substitutionof values for Iv and I_ from equations C25a)and

C28b) into equation {30) results in the one-dimensionalexpressionfor

spectralradiativeflux (re£. 21) as

qllv(vv) • 2_ CO,u)e • v B Ct) E2(Tv - t)dt

. [_o 1 i_(_ov ._) ` "(_ov "_3/_ u du

" 1}_ .f'ovs (t)Ez(t- %1 at (_11
Tu
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where En(t" ) is the exponential integral function defined by

1

En(t) =f un-2 e -t/_ d_ (32) ,_
o

The expression for the net radiative flux at any location is given by

® ,;
: qRCn)= qRv(_ ) dv C33) :

0 J_
?

Often, it is desirable to obtain separate relations for coral :

radiative flux going towards the body and the bo_ shock. Upon de- ,

noting the radiative flux towards the shock by q_ and towards the _'

body by qR' equation (33) can be written as

m

fo lqR(n) - qR(n) - qR(n) = + . -.qRv('rv) dv qRv(Tv) dv (34)

where

qR ffi 2_ ' ,O,u) U du +V

• E2(_ V - t) dt]dv (35a)

fo[qR - 2Tt i_(Tov,.u)e-(_Ov T )/U u du.,

* Bv - r V) ,,:
/

T

, For diffuse surfaces, I:(0,u) and Iv(_ov,U) are independent of :

direction (i.e., independent of _) and may be expressed in terms of

surface radiosities B and B as

25
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Hence, equations (35a) and (35b) are expressed as

]q_(n) - 2 I'JE3(Tv) + n Bu(t) E2(T,s- t) dt dv (36)
0 0

f.[. ]qR(n) - 2 2v E3(Tov " Tv) + (t) E2(t - ,v) dt dv (37)

The expressions for surface radiosities appearing in this equation

(ref. 21) are given by

Blv = elu[_ Bv(Tw) ] + 2 Ply 2v E3(Zov) *fo 'or _ B (t) _2(t) d (38a)

IB f_ovB2v = ¢2y [_ Bv(Ts)] + 2 02_ lv E3frov) + v By(t)
o

E2(TOv - t) dt1 (38b)

where °lv and o2v represent the surface reflectance of the body and

the shock respectively. For nonreflecting surfaces, oZ_ = o2v - O,

and equations (38a) and (38b) reduce to

Blv " _ ely Bv(Tw)' BZv • v ¢2V Bv(Ts) (39)

Sometimes it is convenient to express the radiative flux equations

in terms of gas emissivities, defined by

¢v " 1 - 2E:](Tv - t), cv - 1 - 2E3(t - _v) (40)

26
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By noting that

de: • -2E2(T_ - t) dr. dcv - 2E2(t - T ) dt

�+

¢_(t - O) - i - 2E3(_) - ¢_ • cw

t_Ct - %3 • 1 - 2e3(o) - 1 - 2(1/2) = o - _Ct - %3

_:_o:-_o,,:_-1- ""_C,o,,- "_:_".C",_;
{

equations C36) and (37) can be written as

- /.. :]
"qRCn) • Blv H3CTv) By(c:) de dv (4la)

0

. .; _]
If the rediative flux into the slab at the boundaries is neglected,

then the first right-hand term in equations (41a) and (41b) vanishes

and the net radiative flux is given by •

: £[fo'":'g' ::]' ql(n) = . Bv(¢ ) de - B_(¢ ) de d_ C42) q

Depending upon the particular assumptions made in a physical probl_m,

use is made of either equations (_6) and (37), (41a) and (41b), o_ (42)

In obtaining the net radiative heat flux.

For mathematical convenience, exponential integral's often are

approximated by appropriate exponential functions. There are a few ! ,

standard procedures for doing this, and these are discussed in i
27 _
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references 20 and 21. It has been demonstrated (e.g. ref. 21) that

when the exponential integral of third order is approximated by

2E3(z) - exp(-2z) (43)
f

the radiative transport solutions are exact in the optically thin

limit, and of satisfactory accuracy in the optically thick limit.

By using equation (45), approximate expressions for the gas 3}

emissivitiesare obtained from equation (40) as

cv = I - exp[2Ct - _v)] (44a) _

¢ = 1 - exp[2(T - t)] (44b) ,.

Since En(Z) = -En.l(Z), one could obtain the relation for the
exponential integral of second order by differentiating equation

(43)as

E2(z) = exp (-2z) (45)

Use of equations (43) and (45) could be m&de directly in equations

(3d), (3Sa) and (35b) to obtain appropriate relations for the

radiative heat flux.

In this study, use of the exponential kernel approximation, as :_

given by equations (43) and (45), is made for the radiative transport

in the shock layer. Furthermore,the bow shock is considered trans-

parent, and the free stream is considered c_Id and transparent. For

the evaluation of the equilibrium spectral radiative flux, equations

(36) and (37) are used in the present analysis. _.

NLTEradiative flux equations. - In the previous subsection, the '-
t

transfer equation and the resulting radiative flux equations were _

obtained under the condition of local the,_odynamic equilibrium.

For this situation, molecular distribution in the various energy
• ?

2S
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levels is collision dominated, and the emission process depends on

the local equilibrium temperature alone. The treatment outlined

in obtaining these equations is of a macroscopic nature, The NLTE

situation, on the other hand, involves a study of the individual

molecules of the radiating system since these particles do not obey

the equilibrium Boltzmann distribution. The derivation of the _LTE

transfer equation employs a quantum mechanics treatment. The equation

of radiative transfer, in general, may be expressed in terms of Einstein

coefficients Anm, Bnm' and Bmn (refs. 20, 44} as

dI /dn * o_" I1 - (Nn/Nm) (3nm/Bmn)]

x Anm mn (Nm/Nn) (Bn,n/Bnm) - 1 - r (46) t

_h_ An represents the number density of the nth level, Bmn is

the Einstein coefficient for absorption, Brim is the Einstein
coefficient for stimulated emission, and A is the Einsteinnm

coefficient for spontaneous emission. The above equation can be

written in a simplified form as

dI /dn • o_vCJu - Iv) (47)

where j is the NLTEsource function and _ is the reduced

absorption coefficient which includes the effect of induced emission

(negative absorption) in the medium and is defined as

• _ [l - (Nn/N m) (Bnm/Bmn)] (48)
,r

In this equation _ is the equilibrium absorption coefficient.

The ,_LTE source function is give. in terms of the population ratio

as

; 29
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° II ,
By making use of the relations between the Einstein coefficients,

the source function can be expressed (reffs. 14, 20, 44, 4S) as

Jv" (2hv3/c2]/[CNm/Nn)(gn/gm)" 1] (SO) :

where

- (2hva/cZ,_ B (Sla) :
nm

Bnm• (gm/gn) B n ($Ib)

In this equation h representsth_ Planck constant and gm and

gn are correspondingstatisticalweight factors for the lower and
upper energy levels Cdi_ferentfor dlfferentspecies),which are

assumed to be _nity in the present analysis.

From equationsC48) and (50), it is evident that the state

populationratio _m/_n has to be knovn in order to evaluatethe
nonequilibriumabsorptioncoefficientand NLTE sou::e function.

This is achieved by the method of detailedbalancingof various

transition processes. The three processes involved in the steady-

state detailed balancing are _he induced absorption, induced emission,

and spontaneous (stimulated) emission. In the induced absorption

process, a quantum oE radiation of appropriate energy and frequency

is absorbed, and this results in exciting an atom (or molecule).

In _he induced emission, a quantum o_ radiation interacts with an

excited par=icle to give emission of another quantum of the same

energF, and therebF the particle reverts to the lower ener_F state. _

I. the spontsneous emission case, an excited particle spontaneously

emits a quantum of radiation of the appropriate frequency and rever_s

to a lower enersy state. These processes may be expressed as

30
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M* + h_ _ M + 2h_

M* * M + h. (5Z)

where M* denotes the excited state of the species M. The statis-

tical steady-state equation for a particular electronic state is

given bF

dNl/dt • 0

This implies that the sums of the radiative and collisional rates into

and out of the state 1 must be equal. By employing this criterion, the

state population ratio for any two levels in a multilevel system

consisting of k levels is expressed (ref. I0) as

E_ Pnk QLm,n _ Pmk Qkn,m] (53)Nm/Nn = k k J

where Pnk is the sum of the radiative term Ank and the collision

!i term Cnk. The quantity Qkm,n is the probability for all transitions

from level k to m not involving n such that for k • m, Qkk,n " I.?

Upon combining equations (50) and (55), the source function for

the transition between levels n and m (containing k inter-

mediate levels)[ref. 46) is given by

Jv - ,, -I Sv d_ + c + e ]/(1 + ¢ • _ - 50)
&v

31
i

|

I

1981003630X-040



where

k

o k

n -(1/Anm) _-i Pn_ qZm,n C$5b)
Z#n,_

t

{ • Cnm/[Bmn BvCT)] CSSc)

t

• Iv/B(T), e • e/g (T) (S6)• cZl2h_3, I v

Equations C53) and (54) simplify considerably if _he Level o_

transitions involved is lower. For example, in a chree-Ievel _ransi-

tion the rel_tion for the population ratio " /".o.., _ is obtained froc
equation C$3) as

No/N_- [AZO. azoTav- c,,0 • c:0(g_:Tav * c_z)!;, T

{ - I-,• [1o_I,_,• Co_• Co_(_,_ * C:_ , B2_I_v)],/Qr (s,")

_n thzs equation. 0T represents the total probab_li:y for tra_slcions
from level : (i.e., _rom the third level) and is wiven by

3:
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I

It can be shown easily that, under equilibrium conditions, equation (573 i

reduces to the Boltzmann distribution as

N0/NI = exp(_E/kT) (59) I '

where _E = El - E0 is the difference of energy (in eV) between levels

I and O.

Upon combining equations (50) and (57), a,Simplified expression i _"

for the arce _unctlon (re(. 46)'is obtained as il

Jv = {(2hv3/ct)/[exp(hv/kT)- i]}

f

where

-- - 4_ _ Bv d_ (61)BAy v

61 = C02(A21 + C2I + B21 _&v)/(B01QT ) (62a)

62 = [C20(BI2 I"_v �Cl2)- C02CA21 ) C21 _)]/,(Al0 QT) (62b)

In the preceding equations, n = AI0/CIo represents the ratio of the

collisional deactivation (or relaxation) time and radiative lifetime

of the first excited state, and quantities _I and 62 are the influ-

ence factors in the NLTE source function arising from the higher level

energy transitions.

For a two-level transition, the expression For the source function,

as given by equation (60), further simplifies (re£s. 12, 47) as

' {os sA }J - B - [ _(dqR/dy}dv]/4_ _ _ dv (63)

33
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It is evident from the equation (63) as well as from equation

(60) that the degree of NLTE depends upon the magnitude of the quantities )

n 61 and 62. Since values of 61 and 6 2 are always lower than
, ?

n for all particles involving multilevel energy transitions, the _.

extent of nonequilibrium is characterized essentially by the parameter _

n. This implies that the major contribution to the source function _

comes from the transitions (collisional as well as radiative) involving

the ground state aml the first excited state. Consequently for

n << i, the source function becomes the Planck function, and the i

assumption of LTE is justified. In this case, the collisional process

is sufficiently fast to deexcite the particles to the lower state

before deexcitation takes place by the emission of radiation. On

the other hand, the condition of radiative equilibrium is reached >

for n >> I, and in this case the entire process of excitation and

deexcitation is radiatively controlled. The NLTE radiation becomes

important for conditions where n = 0(I) By theoretical considerations,

Jefferies (ref. i0) has established that the value of _l,2/n is

approximately 0.I for most gases involving multilevel energy transitions.

Equation (60) is used in evaluating the nonequilibrium source function

when no ablation mass injection is considered in the study. With

ablation injection in the shock layer, equation (63) is used for the
%

evaluation of J to simplify the analysis.

To find the expression for the NLTE spectral radiative flux,

the procedure outlined in the previous subsection under the LTE %

conditions [eqs. (29) to (42)] are applicable in general. However,

in this case the NLTE transfer equation, given by equation (47), '_

is integrated between the two parallel boundaries (the body and

the shock). The formal solution of equation (47)(ref. 21) is

given by .,,

C
(

(

34 ;
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,q

+ }- [Bz_E3Ctov - _ ) + _f °_J (t) Ea(t - T )dt] (64)
T

_J

where _ is the nonequilibrium optical thickness and is given in

terms of the nonequilibrium absorption coefficient _ as
u

=,

n ,

r = _0 _ (n} dn (65) , __

Following equation (34), the total radiative flux may be divided
+

into two components as qR going towards the shock and qR going

towards the body. Thus equation (64) is rewritten as

• --a= _ i

+ + • __
qR(a) = 2 _o [BlvE3{_v) + '_ f Jv(t)E2(z v - t) dt] dv (b6a)

qR(n) - 2 _ [B2vE3(,ov o zv) + _ -,fTOV Jv(t)E2(t - tv) dr] d_ (66b)
x_

Since NLTE parameter n is the property of the absorbing/emitting

species, the NLTE source function appears only in the terms which

are attenuated by absorption of radiation by the gaseous soeci+-s,

Equations (b4), (66a), and (66b) are used for evaluating the NLTE

radiative flux.

J_

_: Spectral Model for Gaseous Absorption

I Appropriate spectral models for gaseous absorption are needed +_for the solution of the radiative flux equations [eqs. {37) and (66a)] _,

derived under equilibrium and nonequilibrium conditions, respectively. _,

_" + The absorption model considered in this study,is for a nongray gas ¢

i: with molecular band, continuum, and atomic line transitions. In
,+ general, the spectral absorption coefficient for continuum and line _

_- transitions t,_nybe expressed as
;r 1

I 35 -
g
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,:

The summations in equation (67) extend over all continuum and t
c

line transitions, respectively. In the present analysis, only

the transitions of the species H2, H, and H+ are considered for i

the no ablation case• For the case with carbon phenolic ablation "_

injection, the additional chemical species C2, C3, C, C+, C-, CO, _'_

O, 02 , e', and O+ _ _are considered for the radiative transport, --

The absorption coefficients for line transitions depend on the . 2
%

plasma conditions both through the population of the absorption levels

and the shape of the spectral lines For heavy atomic species at high• _

temperatures, the dominant mechanism for the line broadening is the .i

Stark broadening by electron impacts. Following Armstrong et al.

(ref. 48) the lines can be treated as having the Lorentz shape for

which the shape factor is given by

s 2 S 2
bk(_) : (Yk/:)/[{V -v k) �(Yk)] (68)

5

where _k is the frequency of the kth line center and Yk is the ,_

Stark half-width of the line. In calculating the absorption co-

effic'.ents due to atomic line transitions, a line grouping technique

is used. In this technique, line transitions near a specified :_

frequency value are grouped together, and the spectral absorption :,

is given as that from the line group. However, each line within

the group is treated individually. '

The continuum contribution depends mainly on the plasma state v_

through the population of abso_.bing levels. The spectral absorption _,

coefficient due to continuum transitions is given by

C _C
<i(u) = g Nij ij(9) (69)

!.

36 ,,_-

1981003630X-045



_I

B

where N.. is the number density of the absorbing level and o_. is
,, £) _J
, its cross section. The number density of the particular particle zs

, obtained from thermodynamic state calculations,

_" By employing the detailed information on line and continuum

absorption, Nicolet developed a fairly sophisticated radiative trans-
c

, port model for applications to planetary entry environment (refs. 17,
/

49, 50). For calculation of the equilibrium radiative transport :

properties in the ablation contaminated boundary layers, the method

given in reference 49 is used. An _pproximate model for the fre=

quency-dependentabsorption coefficient is also developed by Sutton t

(see Zoby et al,, ref, 18). In this model, the frequency dependence

of the absorption coefficient is represented by a step=function /

with SB steps of fixed (but not necessarily equal) widths, In tltis :x

model the absorption of helium species is neglected. In step-

functionmodels, the total absorptlon coefficientof the jth _tep is _,

summation of the average absorption coefficient for the ith !

transition in the jth step, given by "_
A

t
v

<ijC_) - (I/A_j) J j _i(w) d_ (70b)
J _

_i " f(T'Ni'v) (70c)

J

Once again _ is the equilibrium absorptioncoefficient, _ the "_

" frequency in eV, T is the temperature in degrees and N. is

the number density in cm"3 In this model, the absorption coal=

ficients for the free-free _nd bound-free transitionsof atomic

hydrogen are expressed by

H -3S I/2
: <ff • (2.01 x I0 Ne N +)/(T v 3) (71) ,_

1
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4

H -14 _
_bf = [(1.99 x i0 NH)/V3] n I (I/n_)

£

and

-20

H = [6.Sl _ lo (T/v3) NH] expCA)[expCB)- 11 (_31_:bf

)

for 4 < N_ _<N£max :

where

A = (-ISTSS01T)[l (_/1s.6)1

B - [1577801T) [(112s) (_It3.o)]

The reduction in the ionization potential 6 is calculated by

. (1.79 x lO'SNe217)l(Tll'z ) (74)

Fox'bound-bound transition of hydrogen molecules and atoms

H • s (7S)
_bb bk(V)

where the line strength S is given by _;

_ _ S- (I.I0. lot' f n_ NH) exp{(-IS7780/T)[l- (I/n_)]} (T_]

!

! ss
?
¢
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The line-shape factor b (v) is given by equation (68). Using

the expressions given above, the absorptions due to continuum and line r,

transitionsover each step are calculated individually. The total

absorption over each individual step is a strong functionof temper-

ature, and this model is valid for a wide range of temperatures.
_f

Further informationon the 58-step model is available in reference

18. This model is used in evaluating the equilibriumabsorption

: coefficient for the no ablation injection case.

At high temperatures,the frequency dependence of the absorption

coefficient is more orderly because of the relative importanceof

' continuum transitionsover line transitions. Under such conditions,

it is possible to represent the spectral absorption of the gas by a

relativelyfewer number of steps. A spectral model consisting of

30 steps is introduced in this study to represent the absorption by

the hydrogen species in the spectral range of 0 to 20 eV. The ab-

sorption by the helium species is also neglected in this study. •

The procedure for developing this model is to calculate the spectral

absorptioncoefficient first by employing Nicolet's detailed model.

The 30-step model is illustrated in figure 3. Further details on this '_

30-step model are given in reference 19. Some results obtained using

the various models are presented under "Results and Discussion" for

comparativepurposes.

The methods outlined thus far to evaluate the equilibriumabsorp-

tion coefficientsare applicable for hydrogen atoms and molecules.

This is quite sufficient if no ablation mass injection is considered

in the analysis. However, with ablation products in the shock layer,

appropriate relations are needed to evaluate the continuum and line "

contributionsto the absorption coefficientby these species. :.

i Informationfor obtaining the absorption cross section for the ; ;
i electronic band systems belonging to diatomic molecules is available _ _

in references Sl and 52. According to these references,the equili-

brium absorption coefficient for a transition from level 0 to level _

I (h_gher level) is given by

, 39
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_(°'15-- av(0.11 no (_71

where n is the number ,_ensity of the absorbing species in level 0
0

and or(O,1) is the absorption cross section. This equilibrium

absorption coefficient has to be corrected for the NLTE transition.

The NLTE absorption coefficient is given by reference 47,

{ }- I - [( Bzo + At0 + Cio5/(Coi + Boz)] (781_v(NLTE5 _ IAu

where _ is the frequency-dependent equilibrium absorption coefficient.v

BZ noting that
, i

AIO = (2hv3/c25 BIO (79a)

BI0 " (g0/gl) B01 (79b) :

Clo " (BIo/Bo1) Co1 exp(hv/kT) (Pgc)

_c " I/CIo, nr - I/AIo (79d)

equation (78) becomes

(NLTE) " ( I - I + n (n/_) qRv dv ]v V
A_

•[(n/_i). exp(-hv/kT)]'l]} (801

This equation is used in evaluating the nonequilibrium absorption

coefficients.

It is seen from equations (601, (63), and (805 that, for the

evaluation of the nonequilibrium absorption coefficients md source

function (and hence the nonequilibrium spectral radiative heat flux),

41
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one must have information on the collisional relaxation time al_dthe

radiative lifetime o£ the excited states. The procedure for obtaining

these is discussed in the next section.
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RADIATIVE LIFETINES AND COLLISIONAL PROCESSESFOR TilE SHOCK-LAYER GASES

Int roduct ion

For a gaseous _edium in local thermodynamic equilibrium, infor-

mation on the collisions between the various particles and their

radiative lifetimes in the excited states is of little importance _'

To analyze the nonequilibrium phenomena, however, a quan$itative

study of collisions between various particles is necessary. This

study need be extended only to those species whose collisional
o

transition rates (under a given set of physical conditions) are

comparable to their radiative transition rates. Honequilibrium

phenomena are important only under these conditions.
f

For Jovian entry conditions and for the case with no ablation !
!

from the probe surface, the NLTE effects are considered only for

the hydrogen species in the shock layer. However, for the case of _

carbon-phenolic ablation injection, the C2 mclecules play a very i :

important role in the radiation blockage. For this case, therefore,

contributions of the C2 molecules are also included in _he NLTE . _

analysis. A discussion of the radiative lifetimes and" colllsional

relaxation times of various species considered for the t;LTE "analysis

(in the shock-layer gas) is presented in this section,

Radiative Lifetimes of Excited States

The radiative lifetime n r of an excited state is the inverse

of the Einstein coefficient for spontaneous emission AIO, and this

is given (refs. $3, 54) by
?

nr • IIAIo , (c2/8_hv3)/Bol (_I) *

where Bol is the Einstein coefficient for absorption. By using

the statistical relation for B0I, equation (81) is written as
% :
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L

_l = [S_2/c33 f _ d_ C_23
?

For the present study it is more appropriate to use the radiative

lifetime in a different form. For a fully allowed electronic transition i

in the visible or near-ultraviolet region of the spectrum, the radiative

lifetime is expressed in terms of the half-width of the spectral Line

(ref. 55) as

nr - h/[2_b) (8S)

Upon inserting the numerical value for the Planck constant h (and

converting from erg_ to cm'l), the value of nr is found to be

n - (5.3 x lO-12)/b (_)
r

7

For a Stark-broadened hydrogen line of Lorent, shape, the value of

the radiative lifetime is found to be 0.52 x lO -7 sec (refs. 7, 55).

This value is used in the present study. It should be noted thet

the radiative Lifetime is a function of frequency and, therefore,

varies according to the various Levels of energy transitions.

Considering all radiative transition probabilities between different

energy levels, it is _:ound _hat the above-mentioned value of nr

corresponds to the shortest time between the ground level (with prin-

cipal quantum number I). Since the maximum nonequilibrilm effect

would correspond to this value of nr, its use i_ justified in
the present stud}'.

There are eight known C2-band systems in the 0,I- to 7.0-eV i:
(0.2- to 1.2-_) spectral region. The Swamband system, whose i

electronic transition is represented by d]_ - a3_u (following the _'_

notation of ref. S$), is the strongest radiating system of the C2 I_

molecules., The Freymark bane (E'_:, - A'_u ) and the Mulliken band |i
. x'T-;) are the next important radiating systems of the C_(D'_u

- i_
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molecules. Hence, the radiative lifetime o£ these band systems has

to be determined first in order to evaluate their respective NLTE •

cross sections. For a molecule with an electronic transition, the

radiative lifetime is related to the wavelength-dependent electronic [

F-number, the electronic transition moment, and the Einstein coefficient

for spontaneous emission An,n, ,. The measured value for the electronic

transition moment is available for the C2 band systems (ref. S6).

The electronic F-number is given in terms of the _quare of the tran-

sition moment IRe/eao[2 as

Fel(X) • [(8_ZmeC/3heZX)ZJReleao[ ] IA (SS) '_

T

where

A- (2 - aO,_,,) (2S". 1)

In the above discussions and relations, the superscript ' denoCes

the upper state and " the lower state, and $" represents th_

spin quantum number of the lower state. The quantity o0, A • I :

A • 0 and o0, A - 0 for _ # O, and A is the resultant angular
momentumo£ electrons. The electronic F-number is related to

the band oscillator strength by

Fv'v" " FeI qv'v" (_6)

!

where qv'v" is the Franck-Condon factor. Now, the radiative lifetime

of the v' state can be expressed as

.!

(n r) - Av,v,, • Fv, v. [(6.67 x lOXS)/_z] (g,,/g,) (S?)

Here, g' and g" are the degeneracies of the upper nnd lower leve_s

respectively and g"/g' = 1. The value of Fv,v,, measured for the

C:-Swan (0,0) band is 6.5 x 10-3 (reg. $'). Upon substituting this

_S
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value of Fv,v,, and using equation (87), the radiative lifetime o£

';he C2-Swan 3_ (v' - O) state is found to be 8.0 x 10.7 sec. Nog

measured value of the band oscillator strength Fv,v,, is available
for the Fre)_ark and Nulliken band system. However the values of

the electronic transition moment are available for these bands; and,

since Fv,v, , is directly proportional to the electronic transition
moment, the radiative lifetime ox the E'Z + state of the Freymark

{0, I) band is l.S x I0-6 sec and the D'_ "g of the Hulliken (0,0)u
band is 6.95 x 10-6 sec. These values are used in the majority of

cases investigated in the present study. However, another se: of

values for the radiative lifetime of different bands is suggested

in _he literature (ref. 56). These are nrCSwan) • 1.25 x I0 -7 sec,
(Freymark) * 4.67 x lO"8 sec, and n (_hlliken) - 8.77 x l0 -9 sec.nr r

These values are significantlydifferent from those ;nentioned

earlier. Because of this discrepancy, it is essential to inves-

tigate the influenceof a different set of radiative lifetimes on

the NLTE results. The following fomat, therefore, will be adapted

for calculatingthe NLTE results in the presence of the ablative

products in the shock layer:

:,LTEtl): based on nr(SWan) • 8 x I0-7 sec

NLTE (II): based on nr(Swan) - 1.25 x I0"_ sec

NLTE (Ill): based on the combined contributionsof _r(SW,_a)

• 8 x I0"7, nr(Freymark) _ l.S _ I0"6, and

nr(Mulliken). 0.95 _ I0"_ s_c

NLTE (IV): based on the combined contributions of nr_Swan)

= 1.25 _ I0 "7, nr(Fre)_ark) = 4.67 , I0 °_, and

nr(_4ulliken) • 8.77 _ I0 "9 sec

46
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Collisional Relaxation Time !

{

The collisional relaxation time is a strong function of temperature

and pressure. At very high temperatures {associated with the ionization

mechanism of hydrogen atoms), it is reasonable to assume that most of

the NLTE transfer o£ radiation takes place before the ionization of

the hydrogcn atom. Hence, for the case with no ablation from the probe

surface, it is quite sufficient to consider only the collisional process

between H2, and H and H „�Collisionsbetween two atoms or molecules

may be of the first or second kind. In collisions of the first kind,

the kinetic energy (KE) of translation goes into excitation energy

according to the process

i A + S �KE• B (88)

where A and B are two different (or same) species in the ground

, state and B is the species B in an excited state. Collisions of

the second kind are more important for the NLTE analysis at high

temperatures. This process is described by

W

A + B �KE(89)

Here, an atom or molecule gives up excitation energy by colliding

with another partner. The time taken by a particle to reach the

ground state from an exci_ed state is the collisional relaxation

time (ref. 58).

i The collisional relaxation time for collisions between neutral

! particles (such as atoms and molecules) is given, in general, by

i the relation

[ -1
nc - i/fc - (n_ (90)
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where fc is r.he frequency of collisions Lsec'l), n is the number
density of _he colliding particles (cm'a), £ is the collisional

cross section of the. colliding particles [cm'?), and v _.- the mo_t

probable velocity of the particles (cm-sec'l). By making use of the

gas kinetic relations, the relaxation time (in sec) is expr_ssed in
r

: terms of temperature as

nc-4v_ ?, (-_m/SRT}t/= (I/n) [91}

where m is the mass of the colliding particles, lufor_m_Lon on the

collisional cross section for different colliding particles is _vai!able

in references 9 and 59.

For an extensive s_udy of the NLTE process, a detailed study of

the various collisional processes between the particles (present in

the radiation field) is necessary. All collisions which are effective

in deactivating the excited particles must be consldered in the analysis.

Relaxation times for the case of collisions between neutral particles

of the same kind (i,e. for H_-H-,,.. C2-C2, II-Hcollisions) can be

calculated using equation (91) with the at_propriate values for coll_-

sional cross section and mass. On the other hand, the collisions

between unlike particles with different masses and cross sections

may be equally ef_ectiv_ in removing the electronic excitation energy

from these particles. In such cases, the effective collisional

frequency is calculated by the method explained below. The colli-

sions between H and H2 are taken as an illustrative exnmple; the

procedure is the same for other combinations of molecules and atoms,

The number of deactivation collisions made per second between H and

H, is given by

=(H - H,_.= .'nil,_ [2kT[mfl__ mll_/(_mH,mH)] (92)
%

k
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i

where nH2 is the number density of H2 and mH2 and mH are the _

masses of a hydrogen molecule and atom respectively. The quantity

' _E is the effective collisional cross section and is given by the

expression

_E = [(f_H2 + RH)/4] + [(nH_ nH) I/2/2_] (93) _,._

where a and _H are the cross sections of H_ and H respectively. '_
H2 - !

Hence,' the relaxation time (in sec) for H2-H collisions is the

reciprocal of the collisional frequency - (H2_H).

The combined rel_xation time for self-collisions and collisions

of different kind is given by reference 60. i

I/nc(COM) = X/Inc(H-H)] • (l-X)/[nc(H2-H)] (94) _

where X represents the mole fraction of hydrogen atoms. In the

present study, collisions between H-H and H2-H are considered in

evaluating the combined relaxation time with no ablation injection

in the shock-layer. Collisions between H2-H2 are neglected because

the number density of H2 is small compared to the number density of

atomic hydrogen. Various collisional relaxation times obtained for

different collisional processes (between the shock-layer species

without ablative products) are shown in figure 4 as a function of

temperature. With the ablation injection, the important species

influencing the collisional deactivation process of the C2 molecules

are H2, H, H*, C3, C, and e'. The relaxation times obtained by

using equations (91) to (94) for the C2-C2, H-H and combined colli-

sions are shown in figure S as a function of temperature. The

C2_C2, C2-C, C2-H, and H-H collisions represent the combined colli-

sional process. The radiative lifetimes of the Swan (0,0}, Freymark

(0,I) and _Iulliken (0,0) bands, corresponding to the case of nr (Ill),

are also shown in this figure.
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Figure 4. Col lisiona_ relaxation time for atomic and molecular

hydrogen species.
50

I

1981003630X-059



1981003630X-060



5

The rate o£ electronic deexcitation from an upper state to a _ _,

lower state (by electron impact in a molecule) is given by

J

Cnm = [A(T/10,O00)rgk]/(_5 _5)[(I/m-2) - (I/n-=)] (95) : ;

where _ and -_ are the principal quantum numbers of the lower and _" _-

upper states, respectively, and A is the excitation rate constant '

(different for different molecules). Due to the absence of e" close
, j

to the wall, where the NLTE effect is more pronounced, deexcitation .-
i"

by electronic collisions is not considered. Here, only the colli-

sional deactivation of C2 by heavy particles is considered. _

The collisional relaxation time for a hydrogen ion is given

(ref. 61) by the relation: _.?

t/a a/2
nc(H <[mi (3kT) ]/(17.94 niegZ_ InA) (96)

A

where m. represents mass of the ions, n. is the number density
1 1

of ions, and A is a parameter which is expressed as a function of

t_r_erature by

i/2
A _ (k3T3/_ni) (97)

For hydrogen ions, equation (96) may be simplified further as

nc(H+) = (22.8 T3/2)/(n i inA) (98)

where T is the heavy particle temperature in K, The collisional "

relaxation times for the hydrogen ions are shown in figure 6 for

different number densities and temperature values.
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Figure 6. Cotlisional relaxation time for hydrogen ions.
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THERHODYNAHICANDTL_NSPORTPROPERTIES
t

!,

Thermodynamicproperties for specific heat. enthalpy, and free

, energy, and transport properties for viscosity and thermal conduc- :_

tivity are required for each species considered in the shock layer.

The general expressions for total entLal_y, specific enthalpy, and

specific heat at constant pressure are given respectivelyby

' HT • h , (u_ + v2)/2 (99)

i

h = ZC. h. (I00)
I Z

Cp = ZCi Cpi (I01)

In the present study, values for the thermodynamicand transport

propertiesare obtained by using polynomial curve fits. The expressions

for hi and Cpi are given (refs. 62, 63) by

hi = RT [A T�(C/3)T2+ (D/4)T 3 �(E/$)T"

+(F/6)Ts + (G/7)T6] (102)

Cpi = R [A + BT + CT2 + DT3 �ET"+ FT5 + GT6] (103)

where R is the universal gas constant and T is the equilibrium

fluid temperature in the shock layer. For different species i -,

under the present investigation,the polznomial coefficients A,

B, . G are given in tables 2 and 3. Equations (99) to (101)

are used to calculate the enthalpy variation in the shock layer. •

?
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For the shock-layer gas, the mixture viscosity and thermal

conductivity are obtained by using the semi-empirical formulas of

Wilke (ref. 64) as;

N N -'_

"_l [xiui/C_ xj*iil] Clo4)
v

N N

K • i_l [xiKi/(j_lxj,ij) ] (105]

where
p

. [Io6)
_ij [l Cui/uj)l/z t_li]Zl_lZl • <• % 14[z C_Zi%311z/2

and H. is the molecular weight of species i. For hydrogen/helium1

species, specific relations for viscosity and thermal conductivity

are given in reference 65. The viscosity of H2 and He, as a function
of temperature, can be obtained from reference 35 as

UH2 - (0.66 x 10-S)CT)31z/(T . 70.5), N secm "2 (107)

UHe - (l.SS x I0"S) (T) 3/2/ (T • 97.8), N sec m°2 (I08) "-

The specific relations for viscosity of other species are given in ,_

reference 35. The genera_ relation for the thermal conductivity,

based on equation (I05), is given (ref. 66) as

K_ • A • BT (I09)

The coefficients A and B for different species used in this "

study are _iven in table a.
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The heat transfer to the wall due to conductionand diffusion is

referred to here as the convective heat ilux and is given in terms

of _he thermal conductzvity and viscosity as

N_

qc " "c2[KCaT/an) �(_Le/Pr)_ (3Ci/an)hi] (l_0)
i=l

The values for the Prandtl number Pr and the Lewis number Le are

taken as 0.74 and i.I, respectively, It should be noted that

equation (110) is similar to equ_,tion (23).
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METHOD OF SOLUTION

Y

_, The numerical procedures for solving the inviscid and viscous

flow equations are discussed in de_ail in references 5 and 29.

7 Tiwari and Szema applied the method outlined in reference 5 _,.

) their study of the effects of precursor heating on chemical and

- radiative nonequilibrium viscous flow around a Jovian entry body

_ (ref. 8). A modified form of this procedure is used in this study

to obtain solutions of the shock-layer equations under both the

_ equilibrium and nonequilibrium radiative heat transfer conditions.

In this method, a transformation is applied to t,,eviscous shock- _

layer equations in order to simplify the numerical computations.

_= In this transformation most of the variables are normalized with _

L their local shock values. The transformed variables are

n = n/n s P =.P/Ps _ = U/Us

_ = s 0 = 0/0s _ = k/ks

= u/us T"= T/Ts Cp = Cp/Cps .:

: 7 = vlv s g= H/Hs (111) "'!

The transformation relating the differentials are ,:

_/Ss ( ) = 8/_¢ C1/ns)(dns/d¢)n _/_n ( ) (l12a)
5

and

• B/Bn ( ) - 1In s B/Bn(), B2/Bn2 = 1/n 2 B2/_n2 ( ) (l12b) i

k
The transformed equation can be expressed in a general form as _'

?
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(_-_l_l_n I) + (aI_IV/_n) + (az|_) + {aa) + (,_'/_() -0 {113)

The quantity _ represents _ in the x-momentum equation,

in the temperature ezlorg)_quation, H in the enthalpy el!erg)'equation,

and Ci in the species continuity equatior,s. The coefficients al

to aw are given in reference S. Iiithradiation included in the

study, the coefficient a 3 is dift'erent from the expression given

in reference 5. The modified value £or the a 3 in the enthalpy

energF equation is

Prs P'rn I _ < + cos O

a3 " _s_-Hs * I + ns,_K r + ns COS O'

• UsU s " _2UsHsU

K COS O ) ]r + n s COS 0+ qR I + nsn_ + (I14)

where

I - ns_-_s b Pr / i-I \-_-' _" " "

UsU_ <u-'u2 , ,15)
S

other transformed equations are the same as given in _eference 5.

The surface boundary conditions in terms of transferred variables

are

. o,_. o,_._ (If6)
W
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The transformed shock conditions are found to be

u = v = _ = H = 0 = p = I CI17)

atn= I.

The second-order partial differential equations as expressed by

equation [I13), along with the surface boundary and shock conditions,

are solved by employing an implicit finite-difference scheme. The

procedure is discussed briefly in the Appendix where flow diagrams

for specific computations are also provided.
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RESULTS AND DISCUSSION

Introduction

The results obtained in the present study extend over a wide

range of free-stream and flow conditions and probe shapes. The

basic shapes considered for the entry probes are sphere cones,

hyperboloids and ellipsoids. Most results have been obtained

for the entry conditions {i.e., the free-stream conditions at dif-

ferent entry altitudes} given in table 1. However, some specific

results have also been obtained for other entry conditions. The

shock-layer gas has been assumed to be in chemical equilibrium for

the entire study. Different spectral models for radiative transfer
!

i_ the gas have been considered, and various results obtained by

these models are compared. The NLTE analysis was first carried out

by considering only the hydrogen/helium species in the shock-layer

gas. Later, the contributions of ablative products were also included

in the NLTE analysis. Thus, in accordance with the four areas of

this study, the results are presented in the following four subsections:

(i) significance of radiation models on the flow-field solutions,

(2) influence of NLTE radiation without ablation injection, {3)

importance of NLTE radiation with ablation injection, and (4) effect

of probe shape change on the flow phenomena. The physical model

and flow conditions for which the results were obtained are given

in each subsection.

Significance of Radiation Models on the Flow-Field Solutions

By employing the three different absorption models discussed

under "Oadiative Transport Models" (subsection titled "Spectral

Model for Gaseous Absorption") results were obtained for the flow-

field variables an_ the wall radiative heat flux distribution for

different entry conditions and body configurations. Inviscid as

well as viscous results were obtained for a 5S-degree half angle

sphere cone, while only viscous results were obtained for a 50-

degree hyperboloid. Comparison of inviscid and viscous results
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is presented for a SS-degree sphere cone entering the Jovian atmosphere

at an altitude of Z = 116 km. Next, a series of viscous results is

presented for the S5-degree sphere cone at different entry conditions.

Finally, viscous results for a 50-degree hyperboloid are presented.

Comparison of inviscid and viscous results.- Inviscid and viscous

results obtained by employing the detailed and 50-step radiation _

models are compared in this subsection. The temperature distribution

along the stagnation streamline is illustrated in figure 7(a). The

agreement between inviscid and viscous results is seen to be fairly
good except near the body, where viscous boundary-layer effects are _

predominant [see fig. 7(b)]. The difference between the detailed

an' 30-step model results is lower for the inviscid case than the :_

viscous case. This is due to relatively higher temperature across _
_7

the shock-layer for the inviscid analysis. As pointed out earlier, _

the step model is more accurate at higher temperatures.

The shock standoff distance as a function of body location is _

illustrated in figure 8. The first three curves illustrate the

inviscid results for the three different radiation models. The

fourth curve, obtained by employing Nicolet's detailed radiation

model, is for the viscous case, and is drawn here for comparison.

The shock standoff distance is slightly larger for the present 30-

step model as compared with the results of the detailed and Sutton's

58-step models. Although the difference between inviscid and

viscous results is seen to be quite small, use of the viscous b

analysis is recommended for more realistic and accurate calculations.

!
Results of radiative heating along the body are illustrated in

J

figure 9. While inviscid results are seen to be slightly higher •

at the stagnation point, viscous results are relatively higher ar

other body locations (up to s /RN = 0.6). This is a direct conse- ._

quence of viscous boundary-layer effects. A discussion of viscous _
A

results for different radiation models follows.
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" Figure 7. (Concluded).
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Figure 8. Shock standoffvariation with distance along the
body surface for inviscid and viscous analysis
($5 ° sphere cone, Z • 116 km).
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Figure 9. Radiative heating along the body for inviscid and viscous
analysis (55 ° sphere cone, Z = 116 km).
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Viscous results for a 55-degree sphere cone. - Viscous resultsi

for a 5S-degree cone (with a nose radius of 22.2 cm) for different

entry conditions are now presented. Results of various radiation

models are compared in order to establish the validity of the present

30-step radiation model.

In the shock layer, the temperature distribution along the

stagnation streamline ,s illustrated in figure 10 for two different

free-stream (density) conditions. It is found that the present 30-

step model underpredict_ the shock-layer temperature by a maximum

of ll percent in comparison to Nicolet's detailed model and by about

4.5 percent when compared with $utton's 58-step model. For free-

stream conditions resulting in higher shock temperature, the agreement

between the results is even better. This is because the higher

temperature absorptioP spectrum can be approximated accurately

by the present step-model.

Frown the results presented in figures 7 and 10, it is noted

that there exists a _teep temperature gradient in the regions close

to the body. At locations about five times the nose radius (normal

to the body), only a slight variation in the shock-layer temperature

is noticed. This fact was _tilized in dividing the shock-layer into

different temperature zones for evaluating the absorption coefficient.

In a preliminary study, two methods were used to account for the

temperature dependence of the absorption coefficient. In the

first method, the absorption coefficient was calculated at the

shock temperature T_. This value was used in analyzing the flow

field in the entire shock layer. Results obtained by this method

are designated here as "present-approximate" results. In the second

method, the shock-layer is divided into three different temperature

zones, two of which are ,.loser to the body (because of the steep

gradient near the body). For each temperature zone, a different

30-step model for absorption is obtained. These are read as input

in the computer program while evaluating the flow variables in the

particular temperature zone. Results obtained by this method are

denoted here as "present" results.
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Figure 10. Temperature distribution along the stagnation streamline for
L two different free-stream densities (SS" sphere cone).
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The variation in temperature just behind the shock (at location

n = 0.05) with distance along the body surface is illustrated in figure

11 for entry conditions at Z = 116 kun. The results of the present

model are found to be about six percent lower than the results of ' :

Nicolet's model. This difference is seen to be fairly uniform along

the body.

i
Figure 12 shows the shock standoff variation with distance along :

the body surface for entry conditions at Z • 116 km. Results of

Sutton's model are found to be in general agreement with the results

of Nicolet's model. The present model is seen to overestimate the

results by a maximum of 8.6 percent when compared with the results :

of Nicolet's model• This is mainly because the present model

underpredicts the shock-layer dens±ty.

The radiative heating rate along the body surface is illustrated

in figures 13 and 14 for different entry conditions. As would be

expected, in all cases, the maximum hea_ing occurs at the stagnation

point. For Z • 116 km, results presented in figure 15 show that the

present model unde_redicts the heating rate by a maximum of 15.6

percent when compared with Nicolet's model. For the case of higher

free-stream densi=y (and hence a higher shock temperature), differences

in the results of the present and other models are seen to be smaller.

Fi_are 14 shows the results of radiative heating for 131-km entry

conditions. For this higher al_itude, the heat transferred to the

body is lower because of lower free-stream density and pressure•

For this case, ,_ifferences in _he results of the present and Nicole_'s "

model are seen to be sl£ghtly higher. ':

Viscous results for a SO-de_rlee. hyperboloid. - Viscous results

_or a SO-degree hyperboloid (with a nose radius of 22.2 cm) are _
presented in this subsection for different entry conditions. The

temperature distribution in the shock layer (along the stagnation

streamllne) Is illustrated in figure 15 for entry conditions at

: = 116 km. The results of the three radiation models are seen

to follow the saae general trend as for the S$-degree sphere con_.

A maximum difference of about 4.5 percent is seen between the

7Z
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, Figure IF. Temperaturedistribution along the stagnation streamline )
(50° hyperboloid, Z = 116 km).
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present model and Nicolet's model. This difference is near the

body (at n = 0.0095). Agreements between the results are better

towards the shock.

The variation in temperature just behind the shock (at location

n = 0.07) with distance along the body surface is illustrated in

figure 16 for entry conditions at Z = I16 km. The results indicate

very good agreement between the three radiation models. The results _

of the present model are within 1.4 percent of the results of

Nicolet's model. As would be expected, maximum difference in results

occurs at the stagnation streamline.

The shock standoff variation with distance along the body surface _

for entry,conditions nt ._ = 116 km is shown in figure 17. As was the

case with the SS-d_gree sphere cone, the present model is seen to

overestimate the results in comparison to the other models.

The radiative heating rate along ',e body surface is illustrated

in figures 18 to 20 for different entry conditions. For this body

geometry also, the maximum heating occurs at the stagnation point.

For Z = 116 km, results presented in figure 18 indicate that the

present model underpredicts the heating rate by a maximum of about

13 percent when compared with Nicolet's model. For higher free-stream

density, the results presented in figure 19 show smaller differences

in the results of various radiation models. For entry conditions

at Z = 131 km, results presented in figure 20 indicate that heat

transferred to the body is significantly lower. This is because of

lower free-stream density and pressure. As was the case with the

S5-degree sphere cone at this altitude, the difference between the
¢

present and Nicolet's results is relatlvely higher.

It is found that use of the present model reduces the computa-

tional time significantly. The use of this model is recommended for

: simple parametric study. However, the use of the present model has ._

its limitations. For problems with varying shock-layer compositions :

and large temperature variations, a suitable empirical cc,rre!_tion _
%

has to be developed from the detailed model _o m_ke the present model

_ore versatite and accurate.
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Influence of NLTE Radiation Without Ablation Injection !:

Specific results obtained by using the NLTE formulation for

the radiative transport, as described by equations (64) to (66),

are presented in this subsection. The governing equations (6) to

(15) were used to solve the shock-layerflow which was considered

to be viscous and in chemical equilibrium. The effect of ablation

mass injection into the flow was neglected. In this subsection,
t

equilibriumradiative transport solutions are presented along with _

the NLTE results for comparativepurpose. For this study, the entry

bodies considered are a 50-degree hyperboloid and a 5S-degree sphere _

cone which enter the Jovian atmosphere at a zero-degreeangle of
t

attack. In both cases, the body nose radius RN is taken to be

22.2 cm. The body surface is assumed to be gray having a surface

emlttance of 0.8, and the wall temperature Tw is taken to be

constant at 4.200 K. The variation of the nonequilibriumabsorption

coefficient (as compared to the equilibriumvalues) is shown in

figure 21 at a temperatureof IS,9S0 K. Within the confines of

assumptionsmade in this study, the equilibrium and nonequilibrium

absorption coefficientsare found to be about the same beyond I0 eV.

The shaded porticn in the figure representsthe decrease in the

absorption coefficientvalues as a result of an increase in the

population of higher energy levels.

NLTE resu:ts for a SOode_ree h_perboloid. - The variation of

collisioRal relaxation time across the ShOck layer is shown in figures

22(a) to 22(c) for three different entry conditions. Figure 22(a)

shows the results for combined H-H and O.S H - 0.S H, co1_isions,

figure 22(b) for H-H and H 'Dcollisions,and figuve 22(c) for

0.9S H - 0.0S H2 and H+-H �collisions.Th_ results indicatc that
in all thre_,cases the relaxation time does not vary significantly

o

acros_ the sLock la)_r except very clos,,to the body. Thus, higb_r _

NLTE effects will be expected in regions closer to the wall wb_re

the assumption of chemical equilibriumus_ally is justified (ref. 8).
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Since relaxation times are comparatively longer for higher entry.

altitudes, one wou_d expect the NLTEeffects to be greater at higher

altitudes. The results presented in figure 22(a) for combined H-H

and 0.$ H - 0.5 H2 collisions, of course, are not representative of

the results for the actua! shock-layer collisional processes; they

are presenr._d here only for comparative purposes. The result_ of

the other _o collisional processes are four.J to be very close

[figs. 22to) and (c)], and they do represent very nearly the results

of actual shock-layer collisional processes.

For the entry condition at Z = If6 km, the temperature distri-

bution along the stagnation streamline is illustrated in figures 25(a)

and (b). The results in figure 2S(a) are for combined H-H and H+-H+

collisions and in figure 22(b) for 0.95 H - O.OS H2 and H+-H+ colli-
sions; the two sets of results are found to be almost identical.

The results clearly indicate thac the NLTE temperature distribution

is consistently lower than the equilibrimn temperature. This implies

that the shock-layer gas absorbs less energy under NLTEconditions

than under equilibrium con6itions. This is because under YLTE

conditions (where the population ratios of the energy levels devia=e

from the equilibrium 8oltzmann distribution) the number of particles

(capable of absorbing the incoming radiation] in the ground state

is comparatively less than under equilibrium con_ .tions. The dif-

ferences between LTE and NLTE results ar_ seen to be lower toward

the shock than toward the body. This is mainly due to direct dependence

of the collisional deactivation process on _he _emperature, The

maximum NLTE effect, therefore, will occur near the body surface

wh_re the collisional deactivation process is slower because of

the lower temperature (_ee a;so the results presented in fig. 22).

For the entry conditions_t Z = I16 km, the temperature distribu-

tic;_salong the body are shown in figure 24 for two location_ in the

shock layer. The NLTE results were obtained by considerin_ the combined

H-H and H'-H_ collisionalprocess. In the region close to the shock

(n = 0.068), the di£ferencesbetween the LTE and NLTE temperaturesare

negligible (less than 0.I percent). On the other hand, at a locat_n
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(b) for 0.95 H-O.O5 H2 and H+-H+ collisions.

Figure 23. (Concluded).
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closer to the body (n = 0.00012). the differences are significantly

larger: a difference of about o.$ percent is noted at the stagnation

point. S_n,:e temperature decreases in the direction of the s coor-

dinate, the NLTE influence is found to be greater at locations away

from the stagnation streamline.

For the entry conditions at = = 116 ka, the s'_ock-standoff variation

with distance along the body surface is shown in figure 25. Since the

s,;ock-stanaoff distance is influenced by the entry conditions and the

shape of the entry body, the conditions of NLTE in the shock layer do

not have any effect on its variation.

For entry conditions at " • 109 km, the LTE and NLTE radiative

heating along the body are illustrated in figure 26. The NLTE results

wer¢ obtained by considering the combined HoH and H -H collisional

process. The results simply indicate that the NLTE heating is con-

sistently lower than the LTE heating all along the body. Since the

number density of participating particles is relatively higher at lower

altitudes, larger NLTE effects would be expected at altitudes higher

than " • 109 km.

For the peak heating entry conditions (i.e. for " = 116 km), the

LTE and NLTE results of radiative heating along the body are illustrated

in figure 27. In order to assess the influence of various deactivation

processes, the NLTE results have been obtained by considering five

different collisional relaxazion times. This is essential because the

.:xact nature of the collisional deactivation process, which actually

occurs in the shock-heated gas, is not known. It is evident from the

figure that the NL_E results obtained by considering only the H Dcollisions are very close to the LTE results. Consequently it may be

concluded _hat in a full)'ionized plasma the assumption of LTE is

justified. The NLTE results obtained by consideringonly the 0.5 H

- 0.5 H, collisions are seen to be si_tificantly lower than the LTE

results. This, however, does not represent a physically realistic

situation for the shock-layergas (becauseof a very low nt_ber density

of hydrogen molecules_; the results are presented here only for
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Figure 25. Shock-standoff variation with distance along the body sur£ace.
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comparative purposes. Probably the more realistic collisional process

_or the shock-layer gas may be represented by the combined H-H and

H H �orH-H2 collisions. The NLTE results obtained by considering the

combined relaxation times of these collisions are seen to be much lower

than the LTE results all along the body. The maximum NLTE effects are

found to be for the case of combined H-}! and 0.95 H - O.0S H- collisions.

The difference between LTE and NLTE results for this case is II percent

at the stagnation point. The case of the combined H-H and H Lcol-

lisional process (which is very close to the case of the combined

0.95 H - 0.05 H2 and H+-H �process),however, appears to be more phys-

icallj convincing. For this case, a comparison of results presented in

figures 26 and 27 reveals that YLTE effects are significantly higher

at Z = 116 km than at Z = 109 kE. Figure 27 shows a nine percent

reduction in radia=ive heating for this case at the stagnation point.

?erhaps an even sore convincxng process to consider will be the combined

H-H, H œ��Œ�and0.95 H - 0.05 H2 collisivnal process. However, at

vresent no theory is available to calculate the relaxation times of such

collisions. The effects of such collisions, of course, will be lower

than those for the combined H-H and 0.95 H - 0.0S H2 colli3ions; the

results are expected to be c!oser to the results of the combined H-H

and H L�collisions.

For entry conditions at Z • 131 km, the results of radiative and

convective heating along the body are illustrated in figure 28. The

NLTE results were obtained by considering the combined H-H and H Hcollisional process. For radiative heating, NLTE results are shown

also for two-level ,_nergy transitions. The results clearly indicate

that, although differences between LTE and NLTE results are small

for the convective heating, they are considerably larger for the

radiative heating. The contributions of higher level energy trans-

itions on NLTE results at_ seen to be quite small (less than 1.7

percent). Since NLTE affects the convective heating only through a

different temperature distribution, the effects are seen to be quite

small away _rom the stagnation point.
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Results of LTE and NLTE radiative heating at the stagnation point

are shown in figure 29 for entry conditions at different altitudes.

The NLTE results again are obtained by considering the combined H-H

and H -H+ collisions. Once again, the NLTE results for two-level

energy transitions are presented for comparative purposes. The results

_how that differences between LTE and NLTE heating rates are larger at

higher altitudes. As mentioned earlier, this is because the densities ,

of participating species are relatively lower at higher altitudes (lower

pressures), and this, in turn, results in longer collisional deactivation

times.

NLTE results for a SS-de_ree sphere cone. - For the S5-degree

sphere cone. the radiative heating results for the peak heating condi-

tions are illustrated in figure 30. _e NLTE results were obtained by

considering the combined H-H and H �L�+collisional process. Because of

the numerical instability, it was possible to obtain accurate NLTE

results only up to the tangency point. Obviously, further work is

needed to improve the numerical procedure for obtaining the NLTE results

toward the downstream regions. In the stagnation region, the results

for the sphere cone show essentially the same trend as for the hyper-

boloid. \t the stagnation point, the difference between the LTE and

NLTE results for the sphere cone is about the same as for the hyper-

boloid. This clearly indicates that the NLTE results are not

influenced significantly by the changes in forebody shapes. However,

further work is needed to make this a definite recommendation because

the LTE heating rates are influenced by' the shape change (refs. 26, 27).

The results presented herein in4icate that, although the relaxation

times for collisions between neutral particles decrease with incresLsing

temperature, the reverse is true for the charged particles. It is also

:_oted that the physically realistic collisional process for the shock-

layer gas (in the absence of ablative products) is the combined H-H and

H+-H+ deactivation process. Specific results indicate that NLTE e_fects

are greater closer to the body than near the shock. This is because the

NLTE results are influenced strongly by the temperature distribution in

IOC
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Figure 30. Rzdiative heating &lon_ the body (SSa _phere _one)
_or entz7 conditions a_ Z = i15 _, H-_ and _ -H"
_ollis_ons.
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the shock layer and the effects are lower at higher temepratures. It

is further noted that the contribution of higher level energy transitions

on the NLTE results is relatively small for all entry conditions. It

is found that the influence of NLTE, in g_aeral, reduces the convecti_te

and radiative heating to the _ntry body. Although this effect is small

for the convective heating, the radiative heating is influenced signif-

icantly. The NLTE effects are greater for higher a_titude entry

, conditions. A qualitative omparison of the results for a 50-degree

hyperboloid and a 5S-degree sphere cone Cunder identical physical and

entry conditions) shows that the NLTE results are not influenced

significantlyby the change in the forebodv configurations of the entry

probe.

I
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Importance of NLTE R-adi,ltio,_ with hblat[v,l,' injection

re investigate the importance of NLTE radiation, the results

were obtaine0J only for a 3S-degree h?l_erboloid (with coupled ablation

mass loss from a carbon-phenolic heat shield). This is because,

for this case, LTE results were already available in the literature

(refs. 3o - 39). For comparative purposes, selected NLTE results

were also obtained for the case with no ablative products {i.e.,

for m • 0_. The ,_LTE results, in this case, were obtained by con-

sidering ,ae combined colllsional deactivation process of 14-H and

H*-H �€�Viscousshock-layer results obtained for the p,.ak-heiting

conditions li'e presented in this subsection.

As discussed earlier tunder "Ra(iative LilY, times and Col lisional

Processe, for the Shock-Layer Gases"], t'or NLTE study, it is ossen-

till to know the nature of the collisional deexcitation processes

and relaxation times of different shock-layer species in presence

of the ablative products. Figure 31 lllustr:ltes the important

species concontritions near the wall influencing the C, col lisional
tl

process. In general, tile Co molecules are concentrated near the
3

w_tll and the number density rapidly reduces :lway frum the w:tll as ..

the>' dissociate into C, and atomic carbon.

In the presence of the ablative products, the relaxation times

for the combined collisional process of C_-C_, C,-C, C,-H, 'and H-H

wex'e used illthe present stud?'. The majority of NLTE results were

obtained by using the combined radiative lifetimes of the Swan,

Fre?_ark, and _talliken band system as indicated by n (III)
r

under "Radiative Lifetimes and Colllsional Processes for the Shock-

Layer _;ases." However, some results for radiative heating rates

were _lso obtained by using the other ridlative lifetimes of the

band system as ttldicated by n r (I_, qr (II), and _r (IVY.
),

rhe temperature variation across the shock°layer (for loc_i-
,{'

_ion $ • O_ is _hown tit f_$uru 32 for ho:h LTI" and NLTt- tllI_ con-

ditions. Results with no miiss in)ection are ._lso shown here for

comparison. As would be expected, tile shock-layer temperature,
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Figure 31. Species concentrations in the vicinity of the wa11.
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in general, is lower in the vicinity of the body in the presence

of the ablative products (refs. 36- 39). It is seen that the NLTE

temperature di_tribution is lower than the equilibrium values ti;rough-

out the shock layer. A maximum difference of 5.48 percent is no£iced

between the 2 values at n = 0.]3. The C2 molecules [n the ablation

layer (a region in the vicinity of the wall), which absorb less under

NLTE conditions, possess less energy than the equilibrium value. This,

in turn, results in lower temperature values in the ablation layer,

and the trend continues in the entire shock layer.

Figure 33 illustrates the density and enthalpy variations across

the shock layer for LTE and NLTE (Ill) conditions. The enthalpy

variation has a similar trend as the shock-layer temperature shown

in figure 32. It was found that NLTE essentially had no influence

on the pressure distribution in the shock layer. The density,

however, is seen to be significantly higher for the NLTE case.

This is a direct consequence of relatively lower NLTE temperatures

in the shock layer. A maximum increase in density of about 5.5 per-

cent is noticed at n = 0.1S.

The equi!ibrium and nonequilibrium shock-standoff variation

with distance along the body surface is shown in figure 34 for cases

with and without ablation injection. As noted earlier, the shock-

standoff distance is not influenced significantly by the NLTE

conditions for the case with no ablation injection. For the case

with ablation injection, however, the NLTE (Ill) results are com-

paratively higher than the LTE results. A possible reason for this

behavior is the combination of enthalpy and density variation

in the shock layer along with the energy loss at the shock for

nonequilibrium conditions.

Variations in the nondimensiona] surface pressure and heating

rate along the forebody of the probe are illustrated in figure 3S.

These quantities are nondimensionalized by their respective stagnation

values of Pw,o = 6.309 arm, qw,o (LTE) = 201.849 _/m z, and qw,o

(NLTE) = 208.927 _IW/m2. It is seen that NLTE vir?ually has no

lOo
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Figure 34. Shock standot't"variation with distance along the body surface.

I08

1981003630B-020



+

I

109

1981003630B-021



influence on the pressure distribution. However, the total heating

rate (convective plus radiative} is increased significantly under

_LTE conditions. The main contribution to the total surface heating

was found to be the radiative heating. The explanation of increased

NLTE radiative heating, in this case, is given in the discussion of

results presented in figure 36.

The results of radiative heating rates for different conditions

are given in table 5 and are shown in figure 36. The LTE and NLTE

(III) results are compared in figure 36(a) for the cases with and

without ablation injection. The results clearly indicate that the

radiative heating co the body, in general, is reduced significantly

in the presence of the ablative products. For the case with no

ablation, the NLTE results are found to be significantly lower than

the LTE results; a decrease of about nine percent is noted at the

stagnation point. In the presence of the ablative products, however,

the results presented in figure 36 and table 5 show that NLTE results

are comparatively higher than the LTE results. The reason for this

is as follows: Under NLTE conditions, the number of C2 molecules

in the ground state (that are capable of absorbing the incoming

radiation from the shock-layer gases) is less as compared to the LTE

values (i.e., the number based on the Boltzmann distribution). This

increases the transparency of the ablation layer which, in turn,

results in higher heating of the entry body. This reverse trend

in the NLTE heating rate is an important finding of this study.

The results for the NLTE heating rate obtained by considering

different radiative lifetimes are illustrated in figure 36(b).

The results for ca_es n (II] and n (III) were found to be
r r

aboue the same for all body locations (see table 5). The results

for nr (I) are seen to give the smallest increas_ in NLTE heating
whereas the results for n (IV) provide the maximum heating rater
to the body. These NLTE results, however, do not di?fer from each

other considerably. The maximum increase in the Jtagnation-point

heating is found to be about 3.5 percent for n (III) and about

5 percent for nr {IV). Thus, based on the information of radiative
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lifetimes of the C2 band system available at the present time, it

may be concluded that the NLIE effects will be maximum fcr the

combined radiative lifetime represented by nr (IV), and this wi]l

increase the radiative heating to the body by a maximum of about

five percent.

The ablation mass loss rate from the body surface is shown

in figure 37. As would be expected, the mass loss rate is higher

under the NLTE conditions (becaus_ of the increased heating rates

to the body).

In conclusion, the results presented here indicate that the

temperature and enthalpy distribution in the shock layer are lower

under the NLTE conditions. The NLTE increases the density in the

shock layer, but it has no influence on the pressure variation.

The radiative heating to the entry body is increased significantly

because of NLTE and this, i,. _ .n, results in increased mass loss

from the body.

Table 5- Wall radiative heat flux for the case with
ab!ation under LTE and NLTE condtions.

Wall Radiative Heat Flux qr' HWm2
* @ * *

s = s*/R_ qR(LTE) qR (I) qR (II) qR (III) qR(IV)

0.0 201.849 206.774 209.017 208.927 211.987

0.2 188.172 193.127 l_6.020 19s.sgz 201.497

0.4 164.709 169.658 173.278 175.127 178.165

0.6108 135.040 139.244 141.497 141.543 144.782

0.7854 110.900 114.765 115.900 115.974 120.841

1.200 75.012 78.767 80.256 79.012 80.572

1.500 58.271 61.81_ 61.570 61.902 62.090
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Effect of Probe 5hape 6hange on th_ Flow _henonena

The shock shape and shock-standoff distance are influenced

greatly by the sh-_e of the entry body. To study the influence

of shape change on flow phenomena around the entry body, it is

essential to specify _everal speculative profiles that will emerge

from mass loss and recession of the heat shield just after the

p_gk heating phase of the entry mission. This is import-_, because

the main data collection phas_ of the mission starts after the

heating phase. At this stage, it is essential to consider the R==ual

shape of the probe rather than the initial shape in investiga:ing

_he _low field and aerodvnamic stability of the entry body. It is

necessary, therefore, to have analytic expressions that are capaL_e

of genet_,Lng such desired shapes. A general relation for the

shape change can be given bl a quadratic form as

y = - sx2 (llS)

where B represents the bluntness factor which determines the body

shape. For negative vatues of B, the resulting shapes are a

family of hyperbolas. For B - i, circular or spherical shapes are "_

obtained. A family of parabolas is obtained for B = 0, and positive

values of B give elliptical shapes.

Equation [il8) is used in generating different shapes for the

entry probe. The initial body shapes considered for this study

are a 4g-degree sphere cone (i.e., a 45-degree half-angle, spherically

capped, conical body), a 35-degree hyperbotoid (i.e., a hyperbolic

forebody shape with an asymptotic angle of e = 35°), and a 45-degree

ellipsoid. The reason for selecting a 35-degree hyperboloid (:nstead

of a 4S-degree hyperboloid) is that the mass losses for this and the

45-degree sphere cone and 45-degr=e ellipsoid are comparable. For

all initial _hapes, the nose radius considered is 31.12 cm and the

_&se radius is t_ken to be twice the nose radius. The final shape
-L

after the heating phase will depend upon the extent of ,ibsorption

II3

1981003630 B-027



of incoming radiation by the ablative products. 11 no radiation

b!uckage is assumed, then it is possible to have severe recession

of the forebody as well as of the afterbody. A 2S or SO percent

radiation blockage will result in rGlatively less severe blunti_'g

of the entry probe. It is possible to generate these speculative

profiles with the help of equation (118).

The numerical procedure employed by Sutton et al. (ref. 26)

for inviscid radiating flow is basically used illthis study also.

For the initial profile, the x and v coordinates, the distance

along the body, and the radius of the curvature are specified at

14 selected stations along thu body. For the changed profiles,

the distance along the body, the radius of curvature, and the body

angle are calculated at each station by using a subroutine with

x and v coordinates as inputs. A three-point central differencing

scheme is used for calculation of the s location, and a two-point

backward differencing s_neme is used for calculation of the curvature.

The three initial body shapes and the corresponding body profiles

that emerge when the influence of shape change is considered are

shown in figures 38(a) to (c). Figure 38(a) shows the forebody

configurations of the 4S-degree sphere cone in which profile I

represents the initial shape and profile 2 is the corresponding

blunted profile. Profile 2 represents a case where the entry bod>

has experienced a severe blunting near the stagnation region as

comn_red to the downstream region. Specifically, this represents

a shape where the initial body has undergone a severe mass loss near

the no_e after absorbing about 50 percent of the incoming radiation.

Profi!es 3 and 4 in figure 38(a) represent two arbitrary blunted

shapes for _ lich the mass loss is assumed to be uniform all alr

the body. For all the forebody profiles shown in figure 38(a),

, the afterbody shape is a 4S-degree half-angle cone.

Different configurations for the 3S-degree hvperboloid are shown

in figure 38(b). In this case also, the severely blunted profile

is represented by the second curve. This corresponds to the case

llb
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of severe stagnation region mass loss with assumed radiatlon blockage

of about 50 percent. Profile _ in figure 38(b) represents the shape

for 40 percent radiation blockage with uniform mass loss along the

entire body. Different configurations for the 4S-degree ellipsoid

are shown in figure 38(c), and they correspond to exactly the same

conditions as for the SS-degree h)_erboloid.

The condition of LTE for the radiative transport was assumed

while obtaining the results using different probe configurations.

Since NLTE is a condition of the absorbing/emittin_ gases, it is

assumed that ':heshape change will not influence the NLTE phenomena.

The results have been obtained for different entry conditions, and

they are p_.esentedhere first for the 4S-degree sphere cone and

then for the 3S-degree hyperboloid. Finally, the peak heating

resuits for the 4S-degree sphere cone and 3S--degreehyperboloid

are compared with peak heating results of the 4S-degree ellipsoid.

Results for 45-degree sphere cone. - Different results obtained

for the 4S..degrcesphere cone are illustrated in figures 39 to 46.

The shock-standoff variation with distance along the body surface

is shown ..n_figures 39 and 40. For peak heating conditions (i.e.

for " = I16 km), results obtained for the four profiles indicated

in figure.38(a) are illustrated in figure 39. Results obtained

for the Lnitial and blunted profiles are compared in figure 40

for the three entry conditions considered. The results indicate

that blunting of the nose region increases the shock-layer thickness

not only near the stagnation region but all along the body, although

there Ls no significant change in the body shape near the flank

region. It is evident from figure 39 that profiles 3 and 4 do not

influ,mce the shock-standoff distance appreciably. This is because

the uniform mass loss tends to preserve the original configuration

of t'_eentry body. As would be expected, the shock-standoff dis-
L

tanee, in general, increases with decreasing altitude, and near the

stagnation region the iafluence of nose bluntin_ i_ greater at

louer altitudes.

_20
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Variation of the shock temperature (i.e., the temperature just

behind the shock) with distance along the body surface is shown

in figure 41 for the three entry conditions considered. For these

conditions,the shock temperature, in general, is found to be higher

for higher entry altitudes. The effect of blunting is seen to increase"

the shock temperaturealong most of the downstream region of the probe.

For Z = I16 km, a meximum difference of 5.6 percent is found at the

tangency point (where the forebody and the afterbody coincide asymptot-

ically). The effect of blunting is seen to have relatively higher

influenceon the shock temperaturefor the othe_ two entry conditions.

Results of moderate shape change (with uniform mass loss), as shown

by curws 3 and 4, indicate negligible influence on the shock tempera-

ture. Variation in density just behind the shock along the body sur-

face is shown in figure 42 for 2 entry conditions, Z - 116 km and

138 km. In general, lower shock densities are associated with higher

entry altitudes. This is because the free-streamd_nsities are lower

at higher altitudes. The shock-densityvariation is relatively higher

for the blunted profile, and a significant increase is noted from

the stagnationpoint to the tangency point. However, virtually no

difference is seen after the location s = i. For Z = i16 km, a max-

imum difference of 5.6 percent is noted between the initial and

blunted profiles at location s = 0.8. This difference is even smaller

(4.5 percent) for results at Z = 138 km. Results of profiles 3 and

4 are in general agreement with the results of the initial profiles;

a maximum difference of 1.2H percent is noted at s = 0.8 for Z = lit km.

Variations in density and v-velocity across the shock layer are

shown in figures 43 and 44, respectively. Figure 43 shows the density

variation for body locations (s = 0 and 1.4) and entry condltiotLs

(Z = 116 km and 138 km). It is seen that along the stagnation line

the density is not influence4 by the shape change. However, signifi-

cant differences in results of the initial and blunted profiles are

noted for the downstream locationof s = 1.4. The density values _

are lower for the blunted profile because the temperaturesare relatively

higher. Uniform profile changes do not alter the density values

lJ3
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appreciably. Figures 44(a) and (bj show that shap( _hange does not

influence the radial component of vc]ocity significantly along the

stagnation streamline; however, blunting is seen to influence the

velocity toward downstream locations.

In the shock layer, v_riation in pressure is relatively small

as compared to variations in temperature and density. The variation

of pressure along the wall is shown in figure 45 for the four profiles

and three entry conditions. As would be expected, pressure distribu-

tion is relatively higher for lower altitudes, and the maximum pressure

occurs at the stagnation point. Results of profiles with uniform

mass loss are not significantly different from the results of the

initial profile. Blunting of the entry body is seen to increase the

wall pressure significantly, the increase being maximum closer to the

tangency point. Blunting does not seem to affect the stagnation

region and downstream pressure distribution appreciably. However,

it is possible for the blunted probe to experience relatively h.gher

_otal drag.

The radiative heating zesults are illustrated in figures 46(a)

and (b). In each case, the heating rate is seen to be signi+.,.antly

higher for the blunted profile all along the body. This, however,

is expected because the shock temperature and shock-standoff distance

are relatively higher for the blunted profile {see figs. 40 an4 41).

The m_ximum stagnation p_int heating o_curs, of course, at Z = 116 kr_.

For this case, the blunted _rofile heating rate is about nine percent

higher than the initial profile he_ting. Figure ¢6{a) shows that

heating rates for profiles 3 and 4 are lower than those of the init:at

profile. A d_fference of 4.9 percent between initial profile and

profile 3, and of 5.3 percent between initial profile and profile 4,

is noticed at the stagnation point. Results presented in figure

46(b) indicate that the stagnation-region heating is comparatively

higher for E = I09 km than foz Z = 138 km. The difference between

stagnation-point heating rates for the blunted and inltia_ profiles

is I0 percent for : = I09 km and 6 percent for _ _ 138 km. The
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results clearly indicate _hat the shape change can have significant

influence on heating of the afterbody of the entry probe.

Results f_r 3S-degree h>_erboloid. - Some important results

obtained for the 35-degree h.vperboloid profiles [see fig. 38(b)]

are presented in figures 47 to $3. As expected, the hyperboloid

resul_s show a smoother trend than the sphere cone results. The

shock-standoff variation with distance along the body surface is

illustrated in figure 47 for the three entry conditions considered.

The results indicate that shape change increases the shock-standoff

distance all along the body. The increase is greater for the blunted

profile, and a ma:_imum increase of 8.5 percent is noted for Z = 109 km

at s = 0. The results of profile 3 show an increase of only about

3 percent for : = I09 km at s = 0. Variation of the shock temperature

is illustrated in figure 48. The results show that the shape change

has only a slight influence on the temperature between locat_,_ns

s = 0.2 and 1.2, and its effects are negligible further downstream.

Variation in the shock density for the initial and blunted profiles

is shown in figure 49 for entry conditions at _ - llb km and 138 km.

The results indicate the shape change has only a slight influence

on the density variation.

The changes in velocity, density, temperature, and pressure

across the shock layer of a hyl)erboloid essentially follow the same

general pattern as for the sphere cone, but ti_eeffects of shape

_::._ngeare no_ as pronounced. Variations in density and v-velocity

across :he shock layer are shown in figures S0 and St, respectively.

Figure 5u shows the density variation for two body locations (s = 0

_nd 1.5) and entry conditions (: - 116 and 138 km). It is seen

that aiong the stagnation ILne the density is not influenced by the

shape change. However, small differences in results of the initial

and blunted profiles are noted for the downstream location of s - }.S.

Uniform profile changes alter the density only slightly in the regions

closer to the body. Figure Sl s',owsthat along the stagnation streamline

the shape change does not have any influence on the radial component

of velocity: only slight changes are noted for : • i38 km and s = 1.5.
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The pressure distribution along the wall is illustrate s _ figure

52 for the three entry condition3. The results indicate that blunting

of the body slightly increases the wall pressure for conditions of

" = 116 and 138 km. Results of the initial profile and the profile

with uniform mass loss were so close that the difference could not

be shown in figure 52.

The results of radiative heating are presented in figure 53.

These results follow the general trend of the sphere cone results.

The differences in stagnation-point heating rates for the initial

and blunted profiles are found to be 4.9, 4.1, and 3.2 percent for

Z = 109, 116, and 138 km, respectively. Results of the profile with

unifokm mass loss are not seen to be significantly different from the

results of the initial profile. i'
I

Comparison of peak heating results. Peak heating results for I_

Jthe 45-degree sphere cone, 3S-degree hyperboloid, and 4S-degree ellipsoid

are compared in figures 54 to 58. Results for the 4S-degree ellipsoid

are seen to follow the same general trend as results for the 4S-degree I

sphere cone; and, in comparison, results for the 3S-degree h.vperboloid I

are seen to exhibit a relatively smoother trend. In the stagnation I

I

region, all results for the ellipsoid are seen to be higher than

results of the other two-body shapes.

Variations in the shock-standoff distance, illustrated in figure

54, indicate that the standoff distances for the ellipsoid are much

greater than for the sphere cone, and, for the most part, the hyper-

boloid results fall between these two results. Fo- the ellipsoid,

the effect of blunting is seen to be quite pronounced in the stagnation

region. As such, one would expect a higher stagnation-region heating

rate for the ellipsoid.

The shock-temperature variations, i11ustrated in figure 55,

indicate that the temperatures are higher for the ellipsoid near the

stagnation region, but they fall between the results of the hyperboloid

and sphere cone between s = 0.6 and 1.2. After location s = 1.2,
(

the results are slightly lower than the results of the sphere corle.

III
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In general, the shape change is seen to have greater effect on the

temperature distribution for the ellipsoia than for the sphere cone.

Variations in the shock density [fig. 56) fctlow essentially the same

trend as the temperature variations. The effects of shape change

for the ellipsoid, however, are not as pronounced as for the sphere

cone. For the ellipsoid, blunting results in a maximum increase in

density of 1.2 percent at s _ 0.8. The results of uniform mass loss,

however, do not show any significant change.

The pressure distribution along the body surface is illustrated

in figure 57. The results show that the shape change has a considerable

effect on the pressure variations for the ellipsoid in the range from

s = 0.6 to 1.2. The total drag for the ellipsoid, however, may not

be great_'r than that for the sphere cone. As noted earlier, the shape

change does not have significant influence on the pressure distri-

bution for the h_Terboloid, but the total drag for this shape can

be higher than that for the other two shapes.

The radiative heating rates for the three entry shapes are compared

in figure 58. As expected, the radiative heating rates for tile ellipsoid

are comparatively higher in the stagnation region. In the do_stream

region, however, tile rest, Its fall between the results of the h._erboloid

and sphere cone. For the ellipsoid, blunting results in a maximum

increase in heating of 7 percent at s -- 0.S. In general, the increase

in heating rates due to shape change is seen to be greater for the

sphere cone and ellipsoid than for the hyperboloid. Alsa, the shape

change is see,. to have consider'ably more effect on heating of the

afterbody for the sphere cone and ellipsoid than for the h.vperboloid.

The results further indicate that the total radiative heating load

[i.e., the total radiative heac input) to the entry body _tll be

comparattvely higher for the ellipsoid, and this will be followed by"

the results for the hyperboloid _illd sphere cone, respectively.

The results presented here indicate that uniform mass loss

resulting ,.n a shape tt_at corresponds.: closely to the initial profile

does not affect tile shock-standoff" ,t,st,nce, temperatur,:, densttv,
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ano pressure distribution along the body appreciably. In such cases,

radiative heating rates to the body are not different significantly

from the heating rates to the body with initial configurations.

Blunting of the nose region, however, is seen to have a significant

influence on the entire flow phenomena in the stagnation and downstream

regions. It is noted that the shock-standoff distance increases with

increasing nose blunting. While nose blunting results in increasing

the shock temperature all along the body, its influence on increasing

the density is significant only in the stagnation region. In the

downstream regions, the velocity, density, temperature, and pressure

are altered significantly across the shock layer because of changes in

the probe configurations. In most cases, considerable increase in

radiative heating rates is noted in the stagnation as well as downstream

regions due to severe nose blunting. Blunting of the entry body is

• seen to increase the wall pressure distribution significantly. But,

its effect on stagnation-region and afterbody pressure distribution

is relatively small. However, it is possible for the blunted sphere

cone and ellipsoid to experience relatively higher total drag.

Blunting is seen to increase the radiative heating rates all along the

body for all configurations considered. But, in the stagnation region,

the increase is relatively higher for the ellipsoid and sphere cone

than for the hyperboloid. The shape change is seen to have considerably

more effect on heating of the afterbody for the sphere cone and ellipsoid

than for the hyperboloid. It is further noted that the total radiative

heating load to the body will be comparatively higher for tileellipsoid

followed by that for the hyperboloid and snhere cone.
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CONCLUSIONS

Results were obtained to investigate the influence of simplified

radiation models, nonequilibrium radiative energy transfer, and probe

condiguration changes on the flow properties and the heating rates in

the stagnation and downstream regions of a Jovian entry body. Results

obtained by using a simple, 30-step, radiation absorption model are

i_ good agreement with results of other sophisticated models available

in the literature. It is found that use of the present model reduces

the computational time significantly. However, use of this simplified

model is recommended only for general parametric studies.

The radiative transfer equation has been formulated under the

nonlocal thermodynamic equilibrium (NLTE) conditions. The NLTE

effects are seen to enter through the absorption coefficient and the

source function. The NLTE source function is expressed in terms of

the Planck function, an NLTE parameter that measures the relative

importance of the collisional and radiative deactivation processes

in the gas and the influence factors arising from the higher level

energy transitions. The influence of NLTE on the entire shock-layer

flow phenomena is investigated by neglecting the contributions of abla-

tive products as well as by including them.

The results obtained in the absence of the ablative species in

the shock layer indicate that the NLTE effects are greater closer to

the body than near the shock. The influence of NLTE, in general,

is to reduce the convective and r_diative heating to the entry body,

and a significant reduction in radiative heating is noted. The NLTE

effects are greater for higher entry conditions. The NLTE results,

however, are not influenced by the change in the forebody conf£gurations.

The viscous shock-layer equations with coupled ablation and mass

injection {for the entry probe with carbon phenolic heat shield) are

solved under the NLTE conditions. The Swan _0,0), Freymark (O,l],

and _lliken (0,0) bands of the C, band systems are treated _o be in

nonequ[librium in the ablation layer. Flow-field results obtained
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for the peak-heating conditions (t = 111.3 sec) indicate that the

temperature distribution in the shock layer is lower under NLTE conditions.

tions. Similar behavior is also noticed for the enthalpy distributiol_.

It is found that NLTE increases the density in the shock layer, but

has no infl,;ence on the pressure variation. The radiative heating to

the entry body is increased significantly because of NLTE; this,

in turn, results in increased mass loss from the body.

For investigating the influence of shape change of the entry probe
L

on the flow field, different initial configurations (aS-degree sphere

cone, 35-degree hyperboloid, and 4S-degree ellipsoid) for the entry

probe were considered, and results were obtained for three different

entry conditions (2 = 109. 116, and 138 km). The res,tlts indicate

that uniform mass loss resulting in a shape that corresponds closely

to the initial profile does not affect the shock-standoff distance,

temperature, density, and pressure distribution along the body

appreciably. Blunting of the nose, however, is seen to have a signi-

ficant influet,ce on the entire flow phenomena in the stagnation and

downstream regions. Considerable increase in radiative heating rates

is noted in the stagnation as well as downstream regions for all

configurations considered. In the stagnation region, however, the

increase is relatively higher for the ellipsoid and sphere cone than

for the hyperboloid. It is concluded that, due to the shape change,

the total heating load co the body will be higher for the ellipsoid

than the hyperboloid and sphere cone.
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APPENDIX

FINITE-DIFFERENCE SCHE_ FOR VISCOUS

RADIATING SHOCK-LAYER FLOW

The solution of the secoud-order partial differential equation

expressed by equation (i13) is obtained by employing the implicit

finite-difference scheme. For this purpose, the shock layer is

considered as a network of nodal points with a variable grid space

in the H-direction. The scheme is shown in figure A.I, where m

is a station measured along the body surface and n denotes the

station normal to the body surface. The derivatives are converted

to finite-difference form by using Taylor's serles expansions.

Thus, unequal space central difference equations in the n-direction

at point m, n can be written as

An An

(_n -'nn ('Aqn_I + Ann) m,n+ " __nn.I (Ann.1 + 3nn) n-

_nn n-1 (A la)
+ IVm,n

AnnAnn_ 1

_-_.in _nn (_n n + _nn. 1) , 3n n nn. 1

+ _nn_1 (Ann + Ann_l) _'m,n- (A.Ib)

(gWIm W -

mtn Wm'l,n t%.ic)

A typical difference equation is obtained by substituting equation_ r_.l ..

in equation (1137 as

%

= -[D /B 3 (An,/Bn) (Cn/Bn) W [A. '.)Nm,n n n Wm,n+l re,r,

LSl
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where

An = (2 + alan n_l)/[Lnn(ann + Anr.._l)]

: Bn = -[2 - al(An n - _n n_l)]/_nnAn n_l ) a 2 - (a_/_ m_l) ]

Cn = (2 - alann)/[_nn_l(Ann �_nn_l)]

Dn * a3 - a_Wm.l,n/A_m_ l

Now, if it is assumed that

Wm,n = EnWm,n Fn (A.3_

or

Win,n_I = En. IW + F (A.4)m,n n-I

then by substituting equation (A.4) into equation (A.2) there is obtained

W = [-An/ + CnEn_l) ]m,n (Bn (Wm,n+l)

- F )/ * C E _ (A 5)+ ('Dn Cn n-I [Bn n n-I

By comparing equations (._.3_ an,4 (A.S), one finds

En = -An/(Bn -CnEn. l) (A.O_

* F )/(Bn + C E ) (A.7'Fn ('Dn " Cn n-I . n n-I

Now, since E and F are known form the boundary conditions, E
n

" and F can be cal,:utated from equations tA.b_ and [A.'_. The
"" n

quantittes W at point m, n can no_ be calculated f
m,N

equation [A.3_.
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- The overall solution procedure starts with evaluation _f the flow

properties immediately behind the shock by using the Rankine-Hugoniot

relations. With known shock and body surface conditions, each of the

second-order partial differential equations is integrated nume:-cally

by using the tridiagonal formalism of equation (i!5) and following the

procedure described by equations (A.2) to (A.7). As mentioned before,

the solutions are obtained first for the stagnation streamline. With

this solution providing the initial conditions, the solution is marched

downstream to the desired body" location. The first solution pass

provides only an approximate flow-field solution. This is because in

the first solution pass the thin shock-layer form of the normal momentum

equation is used, the stagnation streamline solution is assumed to be

.- independent of downstream influence, dv /d_ is equated to zero at each"S

body station, and the shock angle _ is assumed to be the same as the

body angle 9. All these assumptions are removed by making additional

solution passes.

In the first solution pass, the viscous shock-layer _quations are

solved at any location m after obtaining the shock conditions from the

free-stream conditions. The converged solutions at station (m-l) are

used as the initial guess for the solution at station m. The solution

is itereted locally until convergence is achieved. For the stagnation

streamline, guess values for dependent variables are used to start the

solution. In the first local iteration, (Ons/3_) and (OW/Of) are assumed

to be =ero. The energy equation is then integrated numerically to

obtain a new temperature. By using this temperature, new values of

thermodynamic and transpGrt properties are calculated. Ne×t, the x-

momentum equation is integrated to find the _-colaponont of velocity. The

contlnuity equation is used to obtain both the shock standoff distance

and the _-component of velocity. The pressure P is determined by

integrating the normal momentum equation. Then tl_eequation of state is

used to determine the density value.

With known stagnation streamline solution and body surface and

shock conditions, the above procedure is used to find solutions for any
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body location m. The flow chart for the computational procedure is

shown in figures A.2 and A.3. Further details of this procedure and

flow chart are given,in reference 35. The flow c_art for the NLT=

radiation computction is shown in figure A.4, and the integrals used

in this chart are defined in figure A.5.
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